Previous |  Up |  Next

Article

Title: $\mathcal Z$-distributive function lattices (English)
Author: Erné, Marcel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 3
Year: 2013
Pages: 259-287
Summary lang: English
.
Category: math
.
Summary: It is known that for a nonempty topological space $X$ and a nonsingleton complete lattice $Y$ endowed with the Scott topology, the partially ordered set $[X,Y]$ of all continuous functions from $X$ into $Y$ is a continuous lattice if and only if both $Y$ and the open set lattice $\mathcal O X$ are continuous lattices. This result extends to certain classes of $\mathcal Z$-distributive lattices, where $\mathcal Z$ is a subset system replacing the system $\mathcal D$ of all directed subsets (for which the $\mathcal D$-distributive complete lattices are just the continuous ones). In particular, it is shown that if $[X,Y]$ is a complete lattice then it is supercontinuous (i.e.\^^Mcompletely distributive) iff both $Y$ and $\mathcal O X$ are supercontinuous. Moreover, the Scott topology on $Y$ is the only one making that equivalence true for all spaces $X$ with completely distributive topology. On the way to these results, we find necessary and sufficient conditions for $[X,Y]$ to be complete, and some new, purely topological characterizations of continuous lattices by continuity conditions on their (infinitary) lattice operations. (English)
Keyword: completely distributive lattice
Keyword: continuous function
Keyword: continuous lattice
Keyword: Scott topology
Keyword: subset system
Keyword: $\mathcal Z$-continuous
Keyword: $\mathcal Z$-distributive
MSC: 06B35
MSC: 06D10
MSC: 06F30
MSC: 54F05
MSC: 54H10
idZBL: Zbl 06260033
idMR: MR3136497
DOI: 10.21136/MB.2013.143437
.
Date available: 2013-09-14T11:47:17Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143437
.
Reference: [1] Bandelt, H.-J., Erné, M.: The category of Z-continuous posets.J. Pure Appl. Algebra 30 (1983), 219-226. Zbl 0523.06001, MR 0724033, 10.1016/0022-4049(83)90057-9
Reference: [2] Bandelt, H.-J., Erné, M.: Representations and embeddings of $M$-distributive lattices.Houston J. Math. 10 (1984), 315-324. Zbl 0551.06014, MR 0763234
Reference: [3] Baranga, A.: Z-continuous posets.Discrete Math. 152 (1996), 33-45. Zbl 0851.06003, MR 1388630, 10.1016/0012-365X(94)00307-5
Reference: [4] Baranga, A.: Z-continuous posets, topological aspects.Stud. Cercet. Mat. 49 (1997), 3-16. Zbl 0883.06007, MR 1671509
Reference: [5] Erné, M.: Scott convergence and Scott topology on partially ordered sets II.Continuous Lattices. Proc. Conf., Bremen 1979 Lect. Notes Math. 871 61-96 (1981), B. Banaschewski, R.-E. Hoffmann Springer, Berlin. 10.1007/BFb0089904
Reference: [6] Erné, M.: Adjunctions and standard constructions for partially ordered sets.Contributions to General Algebra. Proc. Klagenfurt Conf. 1982 Contrib. Gen. Algebra 2 Hölder, Wien 77-106 (1983), G. Eigenthaler et al. Contributions to General Algebra. Zbl 0533.06001, MR 0721648
Reference: [7] Erné, M.: The ABC of order and topology.Category Theory at Work. Proc. Workshop, Bremen 1991 Res. Expo. Math. 18 57-83 (1991), H. Herrlich, H.-E. Porst Heldermann, Berlin. Zbl 0735.18005, MR 1147919
Reference: [8] Erné, M.: Algebraic ordered sets and their generalizations.I. Rosenberg Algebras and Orders. Kluwer Academic Publishers. NATO ASI Ser. C, Math. Phys. Sci. 389 Kluwer Acad. Publ., Dordrecht 113-192 (1993). Zbl 0791.06007, MR 1233790
Reference: [9] Erné, M.: Z-continuous posets and their topological manifestation.Appl. Categ. Struct. 7 (1999), 31-70. Zbl 0939.06005, MR 1714179, 10.1023/A:1008657800278
Reference: [10] Erné, M.: Minimal bases, ideal extensions, and basic dualities.Topol. Proc. 29 (2005), 445-489. Zbl 1128.06001, MR 2244484
Reference: [11] Erné, M.: Closure.F. Mynard, E. Pearl Beyond Topology. AMS Contemporary Mathematics 486 Providence, R.I. (2009), 163-238. Zbl 1209.08001, MR 2555999
Reference: [12] Erné, M.: Infinite distributive laws versus local connectedness and compactness properties.Topology Appl. 156 (2009), 2054-2069. Zbl 1190.54022, MR 2532134, 10.1016/j.topol.2009.03.029
Reference: [13] Erné, M., Gatzke, H.: Convergence and continuity in partially ordered sets and semilattices.Continuous Lattices and Their Applications. Proc. 3rd Conf., Bremen 1982 Lect. Notes Pure Appl. Math. 101 9-40 (1985). Zbl 0591.54029, MR 0825993
Reference: [14] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S.: A Compendium of Continuous Lattices.Springer, Berlin (1980). Zbl 0452.06001, MR 0614752
Reference: [15] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M., Scott, D. S.: Continuous Lattices and Domains.Encyclopedia of Mathematics and Its Applications 93 Cambridge University Press, Cambridge (2003). Zbl 1088.06001, MR 1975381
Reference: [16] Hoffmann, R.-E.: Continuous posets, prime spectra of completely distributive complete lattices, and Hausdorff compactifications.Continuous Lattices. Proc. Conf., Bremen 1979 Lect. Notes Math. 871 159-208 (1981), B. Banaschewski, R.-E. Hoffmann Springer, Berlin. Zbl 0476.06005, 10.1007/BFb0089907
Reference: [17] Isbell, J.: Completion of a construction of Johnstone.Proc. Am. Math. Soc. 85 (1982), 333-334. Zbl 0492.06006, MR 0656096, 10.1090/S0002-9939-1982-0656096-4
Reference: [18] Keimel, K.: Bicontinuous domains and some old problems in domain theory.Electronical Notes in Th. Computer Sci. 257 (2009), 35-54. 10.1016/j.entcs.2009.11.025
Reference: [19] Kříž, I., Pultr, A.: A spatiality criterion and an example of a quasitopology which is not a topology.Houston J. Math. 15 (1989), 215-234. Zbl 0695.54002, MR 1022063
Reference: [20] Meseguer, J.: Order completion monads.Algebra Univers. 16 (1983), 63-82. Zbl 0522.18005, MR 0690831
Reference: [21] Novak, D.: Generalization of continuous posets.Trans. Am. Math. Soc. 272 (1982), 645-667. Zbl 0504.06003, MR 0662058, 10.1090/S0002-9947-1982-0662058-8
Reference: [22] Qin, F.: Function space of Z-continuous lattices.Fuzzy Syst. Math. 14 (2000), 31-35 Chinese. MR 1802864
Reference: [23] Raney, G. N.: A subdirect-union representation for completely distributive complete lattices.Proc. Am. Math. Soc. 4 (1953), 518-522. Zbl 0053.35201, MR 0058568, 10.1090/S0002-9939-1953-0058568-4
Reference: [24] Scott, D. S.: Continuous lattices.Toposes, Algebraic Geometry and Logic. Dalhousie Univ. Halifax 1971, Lect. Notes Math. 274 97-136 (1972), Springer, Berlin. Zbl 0239.54006, MR 0404073
Reference: [25] Venugopalan, G.: Z-continuous posets.Houston J. Math. 12 (1986), 275-294. Zbl 0614.06007, MR 0862043
Reference: [26] Wright, J. B., Wagner, E. G., Thatcher, J. W.: A uniform approach to inductive posets and inductive closure.Theor. Comput. Sci. 7 (1978), 57-77. Zbl 0732.06001, MR 0480224, 10.1016/0304-3975(78)90040-3
Reference: [27] Wyler, O.: Dedekind complete posets and Scott topologies.B. Banaschewski, R.-E. Hoffmann Continuous Lattices. Proc. Conf., Bremen 1979, Lect. Notes Math. 871 384-389 (1981), Springer, Berlin. Zbl 0488.54018, 10.1007/BFb0089920
.

Files

Files Size Format View
MathBohem_138-2013-3_3.pdf 402.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo