Previous |  Up |  Next

Article

MSC: 93A14, 93C10
Keywords:
output regulation problem; multi-agent systems; internal model
Summary:
In this paper, the distributed output regulation problem of linear multi-agent systems with parametric-uncertain leaders is considered. The existing distributed output regulation results with exactly known leader systems is not applicable. To solve the leader-following with unknown parameters in the leader dynamics, a distributed control law based on an adaptive internal model is proposed and the convergence can be proved.
References:
[1] Francis, B. A., Wonham, W. M.: The internal model priciple of control theory. Automatica 12 (1976), 457-465. DOI 10.1016/0005-1098(76)90006-6 | MR 0429257
[2] Godsil, C., Royle, G. F.: Algebraic Graph Theory. Springer-Verlag, New York 2001. MR 1829620 | Zbl 0968.05002
[3] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182. DOI 10.1016/j.automatica.2006.02.013 | MR 2230987 | Zbl 1117.93300
[4] Hong, Y., Gao, L., Cheng, D., Hu, J.: Lyapunov-based approach to multi-agent systems with switching jointly connected interaction. IEEE Trans. Automat. Control 52 (2007), 943-948. DOI 10.1109/TAC.2007.895860 | MR 2324260
[5] Hong, Y., Wang, X., Jiang, Z.: Distribued output regualtion of leader-follower multi-agent systems. Internat. J. Robust Nonlinear Control 23 (2003), 48-66. DOI 10.1002/rnc.1814 | MR 3008001
[6] Hu, J., Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica 46 (2010), 1382-1387. DOI 10.1016/j.automatica.2010.05.020 | MR 2877254 | Zbl 1204.93011
[7] Huang, J., Chen, Z.: A general framework for tackling the output regulation problem. IEEE Trans. Automat. Control 49 (2004), 2203-2218. DOI 10.1109/TAC.2004.839236 | MR 2106750
[8] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 131-140. DOI 10.1109/9.45168 | MR 1038409 | Zbl 0989.93041
[9] Isidori, A.: Nonlinear Control Systems II. Springer-Verlag, New York 1999. MR 1717603 | Zbl 0931.93005
[10] Khalil, H. K.: Nonlinear Systems. Second Edition. Macmillan, New York 1992. Zbl 1194.93083
[11] Liu, L., Chen, Z., Huang, J.: Parameter convergence and minimal internal model with an adaptive output regulation problem. Automatica 45 (2009), 1206-1311. MR 2531610 | Zbl 1162.93363
[12] Marino, R., Tomei, P.: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice-Hall, London 1995. Zbl 0833.93003
[13] Marino, R., Tomei, P.: Output regulation for linear systems via adaptive internal model. IEEE Trans. Automat. Control 48 (2003), 2199-2202. DOI 10.1109/TAC.2003.820143 | MR 2027244
[14] Obregón-Pulido, G., Castillo-Toledo, B., Loukianov, A. G.: A structurally stable globally adaptive internal model regulator for MIMO linear systems. IEEE Trans. Automat. Control 56 (2011), 160-165. DOI 10.1109/TAC.2010.2090409 | MR 2777212
[15] Olfati, R., Fax, J. A., Murray, R. M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95 (2007), 215-223.
[16] Su, Y., Huang, J.: Cooperative output regulation of linear multi-agent systems. IEEE Trans. Automat. Control 57 (2012), 1062-1066. DOI 10.1109/TAC.2011.2169618 | MR 2952342 | Zbl 1255.93014
[17] Wang, X., Hong, Y., Huang, J., Jiang, Z.: A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans. Automat. Control 55 (2010), 2891-2895. DOI 10.1109/TAC.2010.2076250 | MR 2767160
[18] Wang, X., Han, F.: Robust coordination control of switching multi-agent systems via output regulation approach. Kybernetika 47 (2011), 755-772. MR 2850462 | Zbl 1236.93010
[19] Xu, D., Hong, Y.: Distributed output regulation of nonlinear multi-agent systems based on networked internal model. In: Proc. Chinese Contol Conference, Hefei 2012, pp. 6483-6488.
Partner of
EuDML logo