Previous |  Up |  Next

Article

Title: Analysis of structural properties of Petri nets based on product incidence matrix (English)
Author: Ji, Guangyou
Author: Wang, Mingzhe
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 4
Year: 2013
Pages: 601-618
Summary lang: English
.
Category: math
.
Summary: This paper presents some structural properties of a generalized Petri net (PN) with an algorithm to determine the (partial) conservativeness and (partial) consistency of the net. A product incidence matrix $A=CC^T$ or $\tilde{A}=C^TC$ is defined and used to further improve the relations among PNs, linear inequalities and matrix analysis. Thus, based on Cramer's Rule, a new approach for the study of the solution of a linear system is given in terms of certain sub-determinants of the coefficient matrix and an efficient algorithm is proposed to compute these sub-determinants. The paper extends the common necessary and/or sufficient conditions for conservativeness and consistency in previous papers and some examples are designed to explain the conclusions finally. (English)
Keyword: Petri net
Keyword: structural property
Keyword: linear inequality
Keyword: product incidence matrix
MSC: 93A15
MSC: 93C65
.
Date available: 2013-09-17T16:31:06Z
Last updated: 2013-09-17
Stable URL: http://hdl.handle.net/10338.dmlcz/143448
.
Reference: [1] Ahmad, F., Hejiao, H., Xiaolong, W.: Analysis of structure properties of Petri nets..Using Transition Vectors, Inform. Technol. J. 7 (2008), 285-291. 10.3923/itj.2008.285.291
Reference: [2] Berthelot, G., Terrat, R.: Petri nets theory for correctness of protocols..IEEE Trans. Commun. COM-30 (1982), 12, 2497-2505. MR 0687447, 10.1109/TCOM.1982.1095452
Reference: [3] Cheng, T., Zeng, W.: Invariant preserving transformations for the verification of place/transition systems..IEEE Trans. Systems, Man, Cybernet. Part A: Systems and Humans 28 (1998), 1, 114-121. 10.1109/3468.650328
Reference: [4] Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principal minors..Czechoslovak Math. J. 12 (1962), 382-400. Zbl 0131.24806, MR 0142565
Reference: [5] Liu, G., Jiang, Ch.-J.: Incidence matrix based methods for computing repetitive vectors and siphons of Petri net..J. Inform. Sci. Engrg. 25 (2009), 121-136. MR 2509898
Reference: [6] Hefferon, J.: Internet published textbook..2011. III: Laplaces Expansion, and Topic: Cramers Rule, http://joshua.smcvt.edu/linearalgebra/.
Reference: [7] Liao, J. L., Wang, M., Yang, C.: A new method for structural analysis of Petri net models based on incidence matrix..J. Inform. Comput. Sci. 8 (2011), 6, 877-884.
Reference: [8] Karp, R., Miller, R.: Parallel program schemata..J. Comput. Syst. Sci. 3 (1969), 147-195. Zbl 0369.68013, MR 0246720, 10.1016/S0022-0000(69)80011-5
Reference: [9] Lien, Y. L.: Termination properties of generalized Petri nets..SIAM J. Comput. 5 (1976), 251-265. Zbl 0332.68037, MR 0419093, 10.1137/0205020
Reference: [10] Murata, T.: Petri nets: Properties, analysis and applications..Proc. IEEE 77 (1989), 541-580.
Reference: [11] Matcovschi, M., Mahulea, C., Pastravanu, O.: Exploring structural properties of Petri nets in MATLAB..Trans. Automat. Control Comput. Sci. XLVII(LI), (2001), 1 - 4, 15-26. Zbl 1240.68148
Reference: [12] Xiong, P. Ch., Fan, Y. S., Zhou, M. Ch.: A Petri net approach to analysis and composition of web services..IEEE Trans. Systems, Man, Cybernet. Part A: Systems and Humans 40 (2010), 376-387. 10.1109/TSMCA.2009.2037018
Reference: [13] Peterson, J.: Petri Net Theory and the Modelling of Systems..Prentice Hall, 1983. Zbl 0461.68059, MR 0610984
Reference: [14] Rachid, B., Abdellah, E. M.: On the analysis of some structural properties of Petri nets..IEEE Trans. Systems, Man, Cybernet., Part A: Systems and Humans 35 (2005), 784-794. 10.1109/TSMCA.2005.851323
Reference: [15] Takano, K., Taoka, S., Yamauchi, M., Watanabe, T.: Two efficient methods for computing Petri net invariants..In: Proc. IEEE Internat. Conf. on Systems, Man, Cybern. 2001, pp. 2717-2722.
Reference: [16] Takano, K., Taoka, S., Yamauchi, M., Watanabe, T.: Experimental evaluation of two algorithms for computing Petri net invariants..IEICE Trans. Fundam. E84-A11 (2001), 2871-2880.
Reference: [17] Wu, Y., Xie, L. Y., Li, J. D.: New method to identify minimal cut sets using the incidence matrix of Petri nets..China Mech. Engrg. 19 (2008), 1044-1047.
Reference: [18] Yahia, C. A., Zerhouni, N.: Structure theory of choice-free Petri nets based on eigenvalues..J. Franklin Inst. 336 (1999), 833-849. Zbl 0973.93029, MR 1696381, 10.1016/S0016-0032(99)00008-3
Reference: [19] Yahia, C. A., Zerhouni, N., Moudni, A. El, Ferney, M.: Some subclass of Petri nets and the analysis of their structural properties: A new approach..IEEE Trans. Systems, Man, Cybernet. Part A: Systems and Humans 29 (1999), 164-172. 10.1109/3468.747851
Reference: [20] Yamauchi, M., Wakuda, M., Taoka, S., Watanabe, T.: A fast and space-saving algorithm for computing invariants of Petri nets..In: Proc. IEEE Internat. Conf. Systems, Man, Cybernet. 1999, pp. 866-871.
Reference: [21] Zurawski, R.: Petri net models, functional abstractions, and reduction techniques: Applications to the design of automated manufacturing systems..IEEE Trans. Industr. Electron. 52 (2005), 595-609. 10.1109/TIE.2005.844225
.

Files

Files Size Format View
Kybernetika_49-2013-4_7.pdf 395.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo