Previous |  Up |  Next

Article

Title: Another proof of a result of Jech and Shelah (English)
Author: Komjáth, Péter
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 577-582
Summary lang: English
.
Category: math
.
Summary: Shelah's pcf theory describes a certain structure which must exist if $\aleph _{\omega }$ is strong limit and $2^{\aleph _\omega }>\aleph _{\omega _1}$ holds. Jech and Shelah proved the surprising result that this structure exists in ZFC. They first give a forcing extension in which the structure exists then argue that by some absoluteness results it must exist anyway. We reformulate the statement to the existence of a certain partially ordered set, and then we show by a straightforward, elementary (i.e., non-metamathematical) argument that such partially ordered sets exist. (English)
Keyword: partially ordered set
Keyword: pcf theory
MSC: 03E05
idZBL: Zbl 06282098
idMR: MR3125642
DOI: 10.1007/s10587-013-0040-2
.
Date available: 2013-10-07T11:55:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143476
.
Reference: [1] Jech, T., Shelah, S.: Possible pcf algebras.J. Symb. Log. 61 (1996), 313-317. Zbl 0878.03036, MR 1380692, 10.2307/2275613
Reference: [2] Shelah, S., Laflamme, C., Hart, B.: Models with second order properties V: A general principle.Ann. Pure Appl. Logic 64 (1993), 169-194. Zbl 0788.03046, MR 1241253, 10.1016/0168-0072(93)90033-A
.

Files

Files Size Format View
CzechMathJ_63-2013-3_1.pdf 217.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo