Title:
|
A note on the kernels of higher derivations (English) |
Author:
|
Li, Jiantao |
Author:
|
Du, Xiankun |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
63 |
Issue:
|
3 |
Year:
|
2013 |
Pages:
|
583-588 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $k\subseteq k'$ be a field extension. We give relations between the kernels of higher derivations on $k[X]$ and $k'[X]$, where $k[X]:=k[x_1,\dots ,x_n]$ denotes the polynomial ring in $n$ variables over the field $k$. More precisely, let $D=\{D_n\}_{n=0}^\infty $ a higher $k$-derivation on $k[X]$ and $D'=\{D_n'\}_{n=0}^\infty $ a higher $k'$-derivation on $k'[X]$ such that $D'_m(x_i)=D_m(x_i)$ for all $m\geq 0$ and $i=1,2,\dots ,n$. Then (1) $k[X]^D=k$ if and only if $k'[X]^{D'}=k'$; (2) $k[X]^D$ is a finitely generated $k$-algebra if and only if $k'[X]^{D'}$ is a finitely generated $k'$-algebra. Furthermore, we also show that the kernel $k[X]^D$ of a higher derivation $D$ of $k[X]$ can be generated by a set of closed polynomials. (English) |
Keyword:
|
higher derivation |
Keyword:
|
field extension |
Keyword:
|
closed polynomial |
MSC:
|
13A50 |
idZBL:
|
Zbl 06282099 |
idMR:
|
MR3125643 |
DOI:
|
10.1007/s10587-013-0041-1 |
. |
Date available:
|
2013-10-07T11:56:14Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143478 |
. |
Reference:
|
[1] Arzhantsev, I. V., Petravchuk, A. P.: Closed polynomials and saturated subalgebras of polynomial algebras.Ukr. Math. J. 59 (2007), 1783-1790. Zbl 1164.13302, MR 2411588, 10.1007/s11253-008-0037-4 |
Reference:
|
[2] Kojima, H., Wada, N.: Kernels of higher derivations in $R[x,y]$.Commun. Algebra 39 (2011), 1577-1582. Zbl 1235.13023, MR 2821493, 10.1080/00927871003660200 |
Reference:
|
[3] Mirzavaziri, M.: Characterization of higher derivations on algebras.Commun. Algebra 38 (2010), 981-987. Zbl 1191.16040, MR 2650383, 10.1080/00927870902828751 |
Reference:
|
[4] Miyanishi, M.: Lectures on Curves on Rational and Unirational Surfaces.Tata Institute of Fundamental Research Lectures on Mathematics and Physics Berlin, Springer (1978). Zbl 0425.14008, MR 0546289 |
Reference:
|
[5] Nowicki, A.: Polynomial Derivations and their Rings of Constants.N. Copernicus Univ. Press Toruń (1994). Zbl 1236.13023, MR 2553232 |
Reference:
|
[6] Roman, S.: Advanced Linear Algebra.3rd edition, Graduate Texts in Mathematics 135 New York, Springer (2008). Zbl 1132.15002, MR 2344656 |
Reference:
|
[7] Tanimoto, R.: An algorithm for computing the kernel of a locally finite iterative higher derivation.J. Pure Appl. Algebra 212 (2008), 2284-2297. Zbl 1157.13004, MR 2426508, 10.1016/j.jpaa.2008.03.006 |
Reference:
|
[8] Wada, N.: Some results on the kernels of higher derivations on $k[x,y]$ and $k(x,y)$.Colloq. Math. 122 (2011), 185-189. Zbl 1213.13039, MR 2775166, 10.4064/cm122-2-3 |
. |