Previous |  Up |  Next

Article

Title: Trajectories, first return limiting notions and rings of $H$-connected and iteratively $H$-connected functions (English)
Author: Korczak-Kubiak, Ewa
Author: Pawlak, Ryszard J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 679-700
Summary lang: English
.
Category: math
.
Summary: In the paper the existing results concerning a special kind of trajectories and the theory of first return continuous functions connected with them are used to examine some algebraic properties of classes of functions. To that end we define a new class of functions (denoted $Conn^*$) contained between the families (widely described in literature) of Darboux Baire 1 functions (${\rm DB}_1$) and connectivity functions ($Conn$). The solutions to our problems are based, among other, on the suitable construction of the ring, which turned out to be in some senses an “optimal construction“. These considerations concern mainly real functions defined on $[0,1]$ but in the last chapter we also extend them to the case of real valued iteratively $H$-connected functions defined on topological spaces. (English)
Keyword: trajectory
Keyword: first return continuity
Keyword: $H$-connected function
Keyword: ring of functions
Keyword: D-ring
Keyword: iteratively $H$-connected function
MSC: 26A15
MSC: 26A21
MSC: 54C30
MSC: 54C40
MSC: 54H20
idZBL: Zbl 06282105
idMR: MR3125649
DOI: 10.1007/s10587-013-0047-8
.
Date available: 2013-10-07T12:03:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143484
.
Reference: [1] Bąkowska, A., Loranty, A., Pawlak, R. J.: On the topological entropy of continuous and almost continuous functions.Topology Appl. 158 (2011), 2022-2033. Zbl 1227.54022, MR 2825356, 10.1016/j.topol.2011.06.049
Reference: [2] Biś, A., Nakayama, H., Walczak, P.: Modelling minimal foliated spaces with positive entropy.Hokkaido Math. J. 36 (2007), 283-310. Zbl 1137.57028, MR 2347427, 10.14492/hokmj/1277472805
Reference: [3] Borsík, J.: Algebraic structures generated by real quasicontinuous functions.Tatra Mt. Math. Publ. 8 (1996), 175-184. Zbl 0914.54008, MR 1475279
Reference: [4] Borsík, J.: Sums, differences, products and quotients of closed graph functions.Tatra Mt. Math. Publ. 24 (2002), 117-123. Zbl 1029.54021, MR 1939288
Reference: [5] Bruckner, A. M.: Differentiation of Real Functions. Lecture Notes in Mathematics 659.Springer Berlin (1978). MR 0507448
Reference: [6] Čiklová, M.: Dynamical systems generated by functions with connected $G_{\delta}$ graphs.Real Anal. Exch. 30 (2004/2005), 617-638. MR 2177423, 10.14321/realanalexch.30.2.0617
Reference: [7] Darji, U. B., Evans, M. J., Freiling, C., O'Malley, R. J.: Fine properties of Baire one functions.Fundam. Math. 155 (1998), 177-188. Zbl 0904.26003, MR 1606523
Reference: [8] Darji, U. B., Evans, M. J., O'Malley, R. J.: A first return characterization for Baire one functions.Real Anal. Exch. 19 (1994), 510-515. Zbl 0840.26005, MR 1282666, 10.2307/44152399
Reference: [9] Darji, U. B., Evans, M. J., O'Malley, R. J.: First return path systems: Differentiability, continuity, and orderings.Acta Math. Hung. 66 (1995), 83-103. Zbl 0821.26006, MR 1313777, 10.1007/BF01874355
Reference: [10] Evans, M. J., O'Malley, R. J.: First-return limiting notions in real analysis.Real Anal. Exch. 29 (2003/2004), 503-530. MR 2083794, 10.14321/realanalexch.29.2.0503
Reference: [11] Gibson, R. G., Natkaniec, T.: Darboux like functions.Real Anal. Exch. 22 (1996), 492-533. MR 1460971, 10.2307/44153937
Reference: [12] Grande, Z.: On the Darboux property of the sum of cliquish functions.Real Anal. Exch. 17 (1992), 571-576. Zbl 0762.26001, MR 1171398, 10.2307/44153750
Reference: [13] Grande, Z.: On the sums and products of Darboux Baire*1 functions.Real Anal. Exch. 18 (1993), 237-240. MR 1205517, 10.2307/44133063
Reference: [14] Kellum, K. R.: Iterates of almost continuous functions and Sarkovskii's theorem.Real Anal. Exch. 14 (1989), 420-422. Zbl 0683.26004, MR 0995981, 10.2307/44151956
Reference: [15] Korczak, E., Pawlak, R. J.: On some properties of essential Darboux rings of real functions defined on topological spaces.Real Anal. Exch. 30 (2004/2005), 495-506. MR 2177414
Reference: [16] Maliszewski, A.: Maximums of almost continuous functions.Real Anal. Exch. 30 (2004/2005), 813-818. MR 2177438, 10.14321/realanalexch.30.2.0813
Reference: [17] Maliszewski, A.: Maximums of Darboux Baire one functions.Math. Slovaca 56 (2006), 427-431. Zbl 1141.26002, MR 2267764
Reference: [18] Mikucka, A.: Graph quasi-continuity.Demonstr. Math. 36 (2003), 483-494. Zbl 1034.54010, MR 1984357, 10.1515/dema-2003-0222
Reference: [19] O'Malley, R. J.: First return path derivatives.Proc. Am. Math. Soc. 116 (1992), 73-77. Zbl 0762.26004, MR 1097349, 10.2307/2159296
Reference: [20] Pawlak, R. J.: On some class of functions intermediate between the class $B_1^*$ and the family of continuous functions.Tatra Mt. Math. Publ. 19 (2000), 135-144. Zbl 0989.26002, MR 1771030
Reference: [21] Pawlak, H., Pawlak, R. J.: First-return limiting notions and rings of Sharkovsky functions.Real Anal. Exch. 34 (2009), 549-563. Zbl 1183.26001, MR 2569205, 10.14321/realanalexch.34.2.0549
Reference: [22] Pawlak, R. J.: On the entropy of Darboux functions.Colloq. Math. 116 (2009), 227-241. Zbl 1232.37010, MR 2520142, 10.4064/cm116-2-7
Reference: [23] Szuca, P.: Sharkovskiǐ's theorem holds for some discontinuous functions.Fundam. Math. 179 (2003), 27-41. Zbl 1070.26004, MR 2028925, 10.4064/fm179-1-3
Reference: [24] Szuca, P.: Connected $G_{\delta}$ functions of arbitrarily high Borel class.Tatra Mt. Math. Publ. 35 (2007), 41-45. Zbl 1164.26006, MR 2372433
Reference: [25] Vedenissoff, N.: Sur les fonctions continues dans des espaces topologiques.Fundam. Math. 27 (1936), 234-238 French. Zbl 0015.18005, 10.4064/fm-27-1-234-238
.

Files

Files Size Format View
CzechMathJ_63-2013-3_8.pdf 352.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo