Previous |  Up |  Next

Article

Title: On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph (English)
Author: Guo, Ji-Ming
Author: Li, Jianxi
Author: Shiu, Wai Chee
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 701-720
Summary lang: English
.
Category: math
.
Summary: The Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph are the characteristic polynomials of its Laplacian matrix, signless Laplacian matrix and normalized Laplacian matrix, respectively. In this paper, we mainly derive six reduction procedures on the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph which can be used to construct larger Laplacian, signless Laplacian and normalized Laplacian cospectral graphs, respectively. (English)
Keyword: Laplacian matrix
Keyword: signless Laplacian matrix
Keyword: normalized Laplacian matrix
Keyword: characteristic polynomial
MSC: 05C50
idZBL: Zbl 06282106
idMR: MR3125650
DOI: 10.1007/s10587-013-0048-7
.
Date available: 2013-10-07T12:04:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143485
.
Reference: [1] Berge, C.: Principles of Combinatorics. Mathematics in Science and Engineering vol. 72.Academic Press New York (1971). MR 0270922
Reference: [2] Butler, S.: A note about cospectral graphs for the adjacency and normalized Laplacian matrices.Linear Multilinear Algebra 58 (2010), 387-390. Zbl 1187.05046, MR 2663439, 10.1080/03081080902722741
Reference: [3] Chung, F. R. K.: Spectral Graph Theory. Regional Conference Series in Mathematics 92.American Mathematical Society Providence (1997). MR 1421568
Reference: [4] Grone, R., Merris, R.: Ordering trees by algebraic connectivity.Graphs Comb. 6 (1990), 229-237. Zbl 0735.05054, MR 1081197, 10.1007/BF01787574
Reference: [5] Guo, J.: On the second largest Laplacian eigenvalue of trees.Linear Algebra Appl. 404 (2005), 251-261. Zbl 1066.05085, MR 2149662, 10.1016/j.laa.2005.02.031
Reference: [6] Guo, J.-M.: On the Laplacian spectral radius of trees with fixed diameter.Linear Algebra Appl. 419 (2006), 618-629. Zbl 1118.05063, MR 2277992
Reference: [7] Guo, J.-M.: A conjecture on the algebraic connectivity of connected graphs with fixed girth.Discrete Math. 308 (2008), 5702-5711. Zbl 1189.05085, MR 2459389, 10.1016/j.disc.2007.10.044
Reference: [8] Liu, Y., Liu, Y.: The ordering of unicyclic graphs with the smallest algebraic connectivity.Discrete Math. 309 (2009), 4315-4325. Zbl 1189.05087, MR 2519167, 10.1016/j.disc.2009.01.010
Reference: [9] Schwenk, A. J.: Computing the characteristic polynomial of a graph.Graphs and Combinatorics. Proceedings of the Capital Conference on Graph Theory and Combinatorics at the George Washington University, June 18-22, 1973. Lecture Notes in Mathematics 406 R. A. Bari et al. Springer Berlin (1974), 153-172. Zbl 0308.05121, MR 0387126
Reference: [10] Shao, J. Y., Guo, J. M., Shan, H. Y.: The ordering of trees and connected graphs by algebraic connectivity.Linear Algebra Appl. 428 (2008), 1421-1438. Zbl 1134.05063, MR 2388629
Reference: [11] Yuan, X. Y., Shao, J. Y., Zhang, L.: The six classes of trees with the largest algebraic connectivity.Discrete Appl. Math. 156 (2008), 757-769. Zbl 1137.05047, MR 2397220, 10.1016/j.dam.2007.08.014
Reference: [12] Zhang, X. D.: Ordering trees with algebraic connectivity and diameter.Linear Algebra Appl. 427 (2007), 301-312. Zbl 1125.05067, MR 2351361
.

Files

Files Size Format View
CzechMathJ_63-2013-3_9.pdf 299.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo