Previous |  Up |  Next

Article

Title: On the subfields of cyclotomic function fields (English)
Author: Zhao, Zhengjun
Author: Wu, Xia
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 799-803
Summary lang: English
.
Category: math
.
Summary: Let $K = \mathbb {F}_q(T)$ be the rational function field over a finite field of $q$ elements. For any polynomial $f(T)\in \mathbb {F}_q[T]$ with positive degree, denote by $\Lambda _f$ the torsion points of the Carlitz module for the polynomial ring $\mathbb {F}_q[T]$. In this short paper, we will determine an explicit formula for the analytic class number for the unique subfield $M$ of the cyclotomic function field $K(\Lambda _P)$ of degree $k$ over $\mathbb {F}_q(T)$, where $P\in \mathbb {F}_q[T]$ is an irreducible polynomial of positive degree and $k>1$ is a positive divisor of $q-1$. A formula for the analytic class number for the maximal real subfield $M^+$ of $M$ is also presented. Futhermore, a relative class number formula for ideal class group of $M$ will be given in terms of Artin $L$-function in this paper. (English)
Keyword: cyclotomic function fields
Keyword: $L$-function
Keyword: class number formula
MSC: 11R18
MSC: 11R58
MSC: 11R60
idZBL: Zbl 06282111
idMR: MR3125655
DOI: 10.1007/s10587-013-0053-x
.
Date available: 2013-10-07T12:09:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143490
.
Reference: [1] Bae, S., Lyun, P.-L.: Class numbers of cyclotomic function fields.Acta. Arith. 102 (2002), 251-259. Zbl 0989.11064, MR 1884718, 10.4064/aa102-3-4
Reference: [2] Galovich, S., Rosen, M.: Units and class groups in cyclotomic function fields.J. Number Theory 14 (1982), 156-184. Zbl 0483.12003, MR 0655724, 10.1016/0022-314X(82)90045-2
Reference: [3] Guo, L., Linghsuen, S.: Class numbers of cyclotomic function fields.Trans. Am. Math. Soc. 351 (1999), 4445-4467. MR 1608317, 10.1090/S0002-9947-99-02325-9
Reference: [4] Hayes, D. R.: Analytic class number formulas in global function fields.Invent. Math. 65 (1981), 49-69. MR 0636879, 10.1007/BF01389294
Reference: [5] Rosen, M.: Number Theory in Function Fields.Graduate Texts in Mathematics 210. Springer, New York (2002). Zbl 1043.11079, MR 1876657
Reference: [6] Rosen, M.: The Hilbert class field in function fields.Expo. Math. 5 (1987), 365-378. Zbl 0632.12017, MR 0917350
Reference: [7] Zhao, Z. Z.: The Arithmetic Problems of Some Special Algebraic Function Fields.Ph.D. Thesis, NJU (2012), Chinese.
.

Files

Files Size Format View
CzechMathJ_63-2013-3_14.pdf 225.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo