Previous |  Up |  Next

Article

Title: King type modification of $q$-Bernstein-Schurer operators (English)
Author: Ren, Mei-Ying
Author: Zeng, Xiao-Ming
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 805-817
Summary lang: English
.
Category: math
.
Summary: Very recently the $q$-Bernstein-Schurer operators which reproduce only constant function were introduced and studied by C. V. Muraru (2011). Inspired by J. P. King, Positive linear operators which preserve $x^{2}$ (2003), in this paper we modify $q$-Bernstein-Schurer operators to King type modification of $q$-Bernstein-Schurer operators, so that these operators reproduce constant as well as quadratic test functions $x^{2}$ and study the approximation properties of these operators. We establish a convergence theorem of Korovkin type. We also get some estimations for the rate of convergence of these operators by using modulus of continuity. Furthermore, we give a Voronovskaja-type asymptotic formula for these operators. (English)
Keyword: King type operator
Keyword: $q$-Bernstein-Schurer operator
Keyword: Korovich type approximation theorem
Keyword: rate of convergence
Keyword: Voronovskaja-type result
Keyword: modulus of continuity
MSC: 41A10
MSC: 41A25
MSC: 41A36
idZBL: Zbl 06282112
idMR: MR3125656
DOI: 10.1007/s10587-013-0054-9
.
Date available: 2013-10-07T12:10:24Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143491
.
Reference: [1] Agratini, O., Nowak, G.: On a generalization of Bleimann, Butzer and Hahn operators based on $q$-integers.Math. Comput. Modelling 53 (2011), 699-706. Zbl 1217.33033, MR 2769444, 10.1016/j.mcm.2010.10.006
Reference: [2] Aral, A.: A generalization of Szász-Mirakyan operators based on $q$-integers.Math. Comput. Modelling 47 (2008), 1052-1062. Zbl 1144.41303, MR 2413735, 10.1016/j.mcm.2007.06.018
Reference: [3] Chen, W. Z.: Operators Approximation Theory.Xiamen University Press Xiamen (1989), Chinese.
Reference: [4] DeVore, R. A., Lorentz, G. G.: Constructive Approximation. Grundlehren der Mathematischen Wissenschaften 303.Springer Berlin (1993). MR 1261635, 10.1007/978-3-662-02888-9
Reference: [5] Doğru, O., Örkcü, M.: Statistical approximation by a modification of $q$-Meyer-König Zeller operators.Appl. Math. Lett. 23 (2010), 261-266. MR 2565187, 10.1016/j.aml.2009.09.018
Reference: [6] Gal, S. G.: Voronovskaja's theorem, shape preserving properties and iterations for complex $q$-Bernstein polynomials.Stud. Sci. Math. Hung. 48 (2011), 23-43. MR 2868175
Reference: [7] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 34.Cambridge University Press Cambridge (1990). MR 1052153
Reference: [8] Gupta, V., Radu, C.: Statistical approximation properties of $q$-Baskakov-Kantorovich operators.Cent. Eur. J. Math. 7 (2009), 809-818. Zbl 1183.41015, MR 2563452, 10.2478/s11533-009-0055-y
Reference: [9] Kac, V., Cheung, P.: Quantum Calculus. Universitext.Springer New York (2002). MR 1865777
Reference: [10] King, J. P.: Positive linear operators which preserve $x^{2}$.Acta Math. Hung. 99 (2003), 203-208. Zbl 1027.41028, MR 1973095, 10.1023/A:1024571126455
Reference: [11] Mahmudov, N. I.: Approximation properties of complex $q$-Szász-Mirakjan operators in compact disks.Comput. Math. Appl. 60 (2010), 1784-1791. Zbl 1202.30061, MR 2679142, 10.1016/j.camwa.2010.07.009
Reference: [12] Mahmudov, N. I.: Approximation by genuine $q$-Bernstein-Durrmeyer polynomials in compact disks.Hacet. J. Math. Stat. 40 (2011), 77-89. Zbl 1230.30020, MR 2663881
Reference: [13] Muraru, C.-V.: Note on $q$-Bernstein-Schurer operators.Stud. Univ. Babeş-Bolyai Math. 56 (2011), 489-495. MR 2843706
Reference: [14] Ostrovska, S.: $q$-Bernstein polynomials of the Cauchy kernel.Appl. Math. Comput. 198 (2008), 261-270. Zbl 1149.41002, MR 2403947, 10.1016/j.amc.2007.08.066
Reference: [15] Phillips, G. M.: Bernstein polynomials based on the $q$-integers.Ann. Numer. Math. 4 (1997), 511-518. Zbl 0881.41008, MR 1422700
Reference: [16] Videnskii, V. S.: On $q$-Bernstein polynomials and related positive linear operators.Problems of Modern Mathematics and Mathematical Education Hertzen readings St.-Petersburg (2004), 118-126 Russian.
.

Files

Files Size Format View
CzechMathJ_63-2013-3_15.pdf 260.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo