Previous |  Up |  Next

Article

Title: Power-moments of SL$_3(\mathbb Z)$ Kloosterman sums (English)
Author: Djanković, Goran
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 833-845
Summary lang: English
.
Category: math
.
Summary: Classical Kloosterman sums have a prominent role in the study of automorphic forms on GL$_2$ and further they have numerous applications in analytic number theory. In recent years, various problems in analytic theory of automorphic forms on GL$_3$ have been considered, in which analogous GL$_3$-Kloosterman sums (related to the corresponding Bruhat decomposition) appear. In this note we investigate the first four power-moments of the Kloosterman sums associated with the group SL$_3(\mathbb Z)$. We give formulas for the first three moments and a nontrivial bound for the fourth. (English)
Keyword: power-moment
Keyword: SL$_3(\mathbb Z)$-Kloosterman sum
MSC: 11L05
MSC: 11T23
idZBL: Zbl 06282114
idMR: MR3125658
DOI: 10.1007/s10587-013-0056-7
.
Date available: 2013-10-07T12:11:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143493
.
Reference: [1] Adolphson, A., Sperber, S.: Exponential sums and Newton polyhedra: cohomology and estimates.Ann. Math. (2) 130 (1989), 367-406. Zbl 0723.14017, MR 1014928
Reference: [2] Bump, D., Friedberg, S., Goldfeld, D.: Poincaré series and Kloosterman sums for SL$(3,\mathbb Z)$.Acta Arith. 50 (1988), 31-89. MR 0945275, 10.4064/aa-50-1-31-89
Reference: [3] Goldfeld, D.: Automorphic Forms and $L$-Functions for the Group GL$(n, \mathbb R)$. With an appendix by Kevin A. Broughan.Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006). MR 2254662
Reference: [4] Iwaniec, H.: Topics in Classical Automorphic Forms.Graduate Studies in Mathematics 17 AMS, Providence, RI (1997). Zbl 0905.11023, MR 1474964
Reference: [5] Kloosterman, H. D.: On the representation of numbers in the form $ax^2+by^2 +cz^2+dt^2$.Acta Math. 49 (1927), 407-464. MR 1555249, 10.1007/BF02564120
Reference: [6] Larsen, M.: Appendix to Poincaré series and Kloosterman sums for SL$(3,\mathbb Z)$, in The estimation of $SL_3(\mathbb Z)$ Kloosterman sums.Acta Arith. 50 (1988), 86-89. MR 0945275
.

Files

Files Size Format View
CzechMathJ_63-2013-3_17.pdf 278.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo