Previous |  Up |  Next

Article

Title: The classification of two step nilpotent complex Lie algebras of dimension $8$ (English)
Author: Yan, Zaili
Author: Deng, Shaoqiang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 847-863
Summary lang: English
.
Category: math
.
Summary: A Lie algebra $\mathfrak {g}$ is called two step nilpotent if $\mathfrak {g}$ is not abelian and $[\mathfrak {g},\mathfrak {g}]$ lies in the center of $\mathfrak {g}$. Two step nilpotent Lie algebras are useful in the study of some geometric problems, such as commutative Riemannian manifolds, weakly symmetric Riemannian manifolds, homogeneous Einstein manifolds, etc. Moreover, the classification of two-step nilpotent Lie algebras has been an important problem in Lie theory. In this paper, we study two step nilpotent indecomposable Lie algebras of dimension $8$ over the field of complex numbers. Based on the study of minimal systems of generators, we choose an appropriate basis and give a complete classification of two step nilpotent Lie algebras of dimension $8$. (English)
Keyword: two-step nilpotent Lie algebra
Keyword: base
Keyword: minimal system of generators
Keyword: related sets
Keyword: $H$-minimal system of generators
MSC: 17B05
MSC: 17B30
MSC: 17B40
idZBL: Zbl 06282115
idMR: MR3125659
DOI: 10.1007/s10587-013-0057-6
.
Date available: 2013-10-07T12:12:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143494
.
Reference: [1] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie nilpotentes complexes de dimension $7$. (Classification of nilpotent complex Lie algebras of dimension $7$).Arch. Math. 52 (1989), 175-185 French. Zbl 0672.17005, MR 0985602, 10.1007/BF01191272
Reference: [2] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie filiformes de dimension $8$. (Classification of filiform Lie algebras in dimension $8$).Arch. Math. 50 (1988), 511-525 French. Zbl 0628.17005, MR 0948265, 10.1007/BF01193621
Reference: [3] Carles, R.: Sur la structure des algèbres de Lie rigides. (On the structure of the rigid Lie algebras).Ann. Inst. Fourier 34 (1984), 65-82. Zbl 0519.17004, MR 0762694, 10.5802/aif.978
Reference: [4] Favre, G.: Systeme de poids sur une algèbre de Lie nilpotente.Manuscr. Math. 9 (1973), 53-90. Zbl 0253.17011, MR 0349780, 10.1007/BF01320668
Reference: [5] Galitski, L. Y., Timashev, D. A.: On classification of metabelian Lie algebras.J. Lie Theory 9 (1999), 125-156. Zbl 0923.17015, MR 1680007
Reference: [6] Gauger, M. A.: On the classification of metabelian Lie algebras.Trans. Am. Math. Soc. 179 (1973), 293-329. Zbl 0267.17015, MR 0325719, 10.1090/S0002-9947-1973-0325719-0
Reference: [7] Gong, M. P.: Classification of Nilpotent Lie Algebras of Dimension $7$ (Over Algebraically Closed Fields and $R$).Ph.D. Thesis University of Waterloo, Waterloo (1998). MR 2698220
Reference: [8] Goze, M., Khakimdjanov, Y.: Nilpotent Lie Algebras. Mathematics and its Applications 361.Kluwer Academic Publishers Dordrecht (1996). MR 1383588
Reference: [9] Leger, G., Luks, E.: On derivations and holomorphs of nilpotent Lie algebras.Nagoya Math. J. 44 (1971), 39-50. Zbl 0264.17003, MR 0297828, 10.1017/S0027763000014525
Reference: [10] Ren, B., Meng, D.: Some $2$-step nilpotent Lie algebras. I.Linear Algebra Appl. 338 (2001), 77-98. Zbl 0992.17005, MR 1860314, 10.1016/S0024-3795(01)00367-6
Reference: [11] Ren, B., Zhu, L. S.: Classification of $2$-step nilpotent Lie algebras of dimension $8$ with $2$-dimensional center.Commun. Algebra 39 (2011), 2068-2081. MR 2813164, 10.1080/00927872.2010.483342
Reference: [12] Revoy, P.: Algèbres de Lie metabeliennes.Ann. Fac. Sci. Toulouse, V. Ser., Math. 2 (1980), 93-100 French. Zbl 0447.17007, MR 0595192, 10.5802/afst.547
Reference: [13] Santharoubane, L. J.: Kac-Moody Lie algebra and the classification of nilpotent Lie algebras of maximal rank.Can. J. Math. 34 (1982), 1215-1239. MR 0678665, 10.4153/CJM-1982-084-5
Reference: [14] Seeley, C.: $7$-dimensional nilpotent Lie algebras.Trans. Am. Math. Soc. 335 (1993), 479-496. Zbl 0770.17003, MR 1068933
Reference: [15] Umlauf, K. A.: Ueber den Zusammenhang der endlichen continuirlichen Transformationsgruppen, insbesondere der Gruppen vom Range Null.Ph.D. Thesis University of Leipzig (1891), German.
.

Files

Files Size Format View
CzechMathJ_63-2013-3_18.pdf 291.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo