Previous |  Up |  Next

Article

Title: New existence results of anti-periodic solutions of nonlinear impulsive functional differential equations (English)
Author: Liu, Yuji
Author: Liu, Xingyuan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 4
Year: 2013
Pages: 337-360
Summary lang: English
.
Category: math
.
Summary: This paper is a continuation of Y. Liu, Anti-periodic solutions of nonlinear first order impulsive functional differential equations, Math. Slovaca 62 (2012), 695–720. By using Schaefer's fixed point theorem, new existence results on anti-periodic solutions of a class of nonlinear impulsive functional differential equations are established. The techniques to get the priori estimates of the possible solutions of the mentioned equations are different from those used in known papers. An example is given to illustrate the main theorems obtained. One sees easily that Example 3.1 can not be solved by Theorems 2.1–2.3 obtained in Liu's paper since (G2) in Theorem 2.1, (G4) in Theorem 2.2 and (G6) in Theorem 2.3 are not satisfied. (English)
Keyword: anti-periodic solution
Keyword: impulsive functional differential equation
Keyword: fixed-point theorem
Keyword: growth condition
MSC: 34B16
MSC: 34C25
idZBL: Zbl 06260037
idMR: MR3231091
DOI: 10.21136/MB.2013.143508
.
Date available: 2013-11-09T20:22:10Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143508
.
Reference: [1] Aftabizadeh, A. R., Aizicovici, S., Pavel, N. H.: On a class of second-order anti-periodic boundary value problems.J. Math. Anal. Appl. 171 (1992), 301-320. Zbl 0767.34047, MR 1194081, 10.1016/0022-247X(92)90345-E
Reference: [2] Aftabizadeh, A. R., Aizicovici, S., Pavel, N. H.: Anti-periodic boundary value problems for higher order differential equations in Hilbert spaces.Nonlinear. Anal., Theory Methods Appl. 18 (1992), 253-267. Zbl 0779.34054, MR 1148289, 10.1016/0362-546X(92)90063-K
Reference: [3] Aftabizadeh, A. R., Huang, Y. K., Pavel, N. H.: Nonlinear third-order differential equations with anti-periodic boundary conditions and some optimal control problems.J. Math. Anal. Appl. 192 (1995), 266-293. Zbl 0831.34019, MR 1329424, 10.1006/jmaa.1995.1171
Reference: [4] Aizicovici, S., McKibben, M., Reich, S.: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities.Nonlinear. Anal., Theory Methods Appl. 43 (2001), 233-251. Zbl 0977.34061, MR 1790104, 10.1016/S0362-546X(99)00192-3
Reference: [5] Aizicovici, S., Reich, S.: Anti-periodic solutions to a class of non-monotone evolution equations.Discrete Contin. Dyn. Syst. 5 (1999), 35-42. Zbl 0961.34044, MR 1664469
Reference: [6] Chen, Y.: On Massera's theorem for anti-periodic solution.Adv. Math. Sci. Appl. 9 (1999), 125-128. Zbl 0924.34037, MR 1690436
Reference: [7] Chen, Y., Nieto, J. J., O'Regan, D.: Anti-periodic solutions for fully nonlinear first-order differential equations.Math. Comput. Modelling 46 (2007), 1183-1190. Zbl 1142.34313, MR 2376702, 10.1016/j.mcm.2006.12.006
Reference: [8] Chen, Y., Wang, X., Xu, H.: Anti-periodic solutions for semilinear evolution equations.J. Math. Anal. Appl. 273 (2002), 627-636. Zbl 1055.34113, MR 1932511, 10.1016/S0022-247X(02)00288-3
Reference: [9] Cheng, S., Zhang, G.: Existence of positive periodic solutions for non-autonomous functional differential equations.Electron. J. Differ. Equ. (electronic only) 2001 (2001), paper no. 59, 8 pages. Zbl 1003.34059, MR 1863778
Reference: [10] Ding, W., Xing, Y., Han, M.: Anti-periodic boundary value problems for first order impulsive functional differential equations.Appl. Math. Comput. 186 (2007), 45-53. Zbl 1124.34039, MR 2316490, 10.1016/j.amc.2006.07.087
Reference: [11] Fan, Q., Wang, W., Yi, X.: Anti-periodic solutions for a class of nonlinear $n$th-order differential equations with delays.J. Comput. Appl. Math. 230 (2009), 762-769. Zbl 1182.34088, MR 2536005, 10.1016/j.cam.2009.01.005
Reference: [12] Franco, D., Nieto, J.: First order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions.Nonlinear Anal., Theory Methods Appl. 42 (2000), 163-173. Zbl 0966.34025, MR 1773975, 10.1016/S0362-546X(98)00337-X
Reference: [13] Franco, D., Nieto, J.: Maximum principles for periodic impulsive first order problems.J. Comput. Appl. Math. 88 (1998), 149-159. Zbl 0898.34010, MR 1609074, 10.1016/S0377-0427(97)00212-4
Reference: [14] Franco, D., Nieto, J., O'Regan, D.: Anti-periodic boundary value problem for nonlinear first order ordinary differential equations.Math. Inequal. Appl. 6 (2003), 477-485. Zbl 1097.34015, MR 1992487
Reference: [15] Gaines, R., Mawhin, J.: Coincidence Degree, and Nonlinear Differential Equations.Lecture Notes in Mathematics 568 Springer, Berlin (1977). Zbl 0339.47031, MR 0637067, 10.1007/BFb0089537
Reference: [16] Lakshmikantham, V. V., Bajnov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.Series in Modern Applied Mathematics 6 World Scientific Publishing, Singapore (1989). Zbl 0719.34002, MR 1082551
Reference: [17] Liu, Y.: Anti-periodic boundary value problems for nonlinear impulsive functional differential equations.Fasc. Math. 39 (2008), 27-45. Zbl 1163.34052, MR 2435788
Reference: [18] Liu, Y.: Anti-periodic solutions of nonlinear first order impulsive functional differential equations.Math. Slovaca 62 (2012), 695-720. Zbl 1274.34229, MR 2947975, 10.2478/s12175-012-0039-4
Reference: [19] Liu, Y.: Further results on positive periodic solutions of impulsive functional differential equations and applications.ANZIAM J. 50 (2009), 513-533. Zbl 1193.34167, MR 2571296, 10.1017/S1446181108000230
Reference: [20] Liu, Y.: A survey and some new results on the existence of solutions of PBVPs for first order functional differential equations.Appl. Math., Praha 54 (2009), 527-549. Zbl 1212.34184, MR 2563123, 10.1007/s10492-009-0032-6
Reference: [21] Luo, Z., Shen, J., Nieto, J.: Antiperiodic boundary value problem for first-order impulsive ordinary differential equations.Comput. Math. Appl. 49 (2005), 253-261. Zbl 1084.34018, MR 2123404, 10.1016/j.camwa.2004.08.010
Reference: [22] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems.Regional Conference Series in Mathematics 40 AMS, Providence, R.I. (1979). Zbl 0414.34025, MR 0525202
Reference: [23] Okochi, H.: On the existence of periodic solutions to nonlinear abstract parabolic equations.J. Math. Soc. Japan 40 (1988), 541-553. Zbl 0679.35046, MR 0945351, 10.2969/jmsj/04030541
Reference: [24] Wang, K.: A new existence result for nonlinear first-order anti-periodic boundary value problems.Appl. Math. Lett. 21 (2008), 1149-1154. Zbl 1168.34315, MR 2459839, 10.1016/j.aml.2007.12.013
Reference: [25] Wang, K., Li, Y.: A note on existence of (anti-)periodic and heteroclinic solutions for a class of second-order ODEs.Nonlinear Anal., Theory Methods Appl. 70 (2009), 1711-1724. Zbl 1167.34012, MR 2483592, 10.1016/j.na.2008.02.054
Reference: [26] Wang, W., Shen, J.: Existence of solutions for anti-periodic boundary value problems.Nonlinear Anal., Theory Methods Appl. 70 (2009), 598-605. Zbl 1165.34007, MR 2468405, 10.1016/j.na.2007.12.031
Reference: [27] Yin, Y.: Monotone iterative technique and quasilinearization for some anti-periodic problems.Nonlinear World 3 (1996), 253-266. Zbl 1013.34015, MR 1390017
Reference: [28] Yin, Y.: Remarks on first order differential equations with anti-periodic boundary conditions.Nonlinear Times Dig. 2 (1995), 83-94. Zbl 0832.34018, MR 1333336
.

Files

Files Size Format View
MathBohem_138-2013-4_1.pdf 310.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo