Previous |  Up |  Next

Article

Title: Solvability of a generalized third-order left focal problem at resonance in Banach spaces (English)
Author: Zhang, Youwei
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 4
Year: 2013
Pages: 361-382
Summary lang: English
.
Category: math
.
Summary: This paper deals with the generalized nonlinear third-order left focal problem at resonance $$ \begin {cases} (p(t)u''(t))'-q(t)u(t)=f(t, u(t), u'(t), u''(t)), \quad t\in \mathopen ]t_0, T[, m(u(t_0), u''(t_0))=0, n(u(T), u'(T))=0, l(u(\xi ), u'(\xi ), u''(\xi ))=0, \end {cases} $$ where the nonlinear term is a Carathéodory function and contains explicitly the first and second-order derivatives of the unknown function. The boundary conditions that we study are quite general, involve a linearity and include, as particular cases, Sturm-Liouville boundary conditions. Under certain growth conditions on the nonlinearity, we establish the existence of the nontrivial solutions by using the topological degree technique as well as some recent generalizations of this technique. Our results are generalizations and extensions of the results of several authors. An application is included to illustrate the results obtained. (English)
Keyword: Fredholm operator
Keyword: coincidence degree
Keyword: left focal problem
Keyword: nontrivial solution
Keyword: resonance
MSC: 34B15
MSC: 47J05
idZBL: Zbl 06260038
idMR: MR3231092
DOI: 10.21136/MB.2013.143510
.
Date available: 2013-11-09T20:23:07Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143510
.
Reference: [1] Agarwal, R. P.: Focal Boundary Value Problems for Differential and Difference Equations.Mathematics and its Applications 436 Kluwer Academic Publishers, Dordrecht (1998). Zbl 0914.34001, MR 1619877
Reference: [2] Anderson, D. R.: Discrete third-order three-point right-focal boundary value problems.Comput. Math. Appl. 45 (2003), 861-871. Zbl 1054.39010, MR 2000563, 10.1016/S0898-1221(03)80157-8
Reference: [3] Anderson, D. R., Davis, J. M.: Multiple solutions and eigenvalues for third-order right focal boundary value problems.J. Math. Anal. Appl. 267 (2002), 135-157. Zbl 1003.34021, MR 1886821, 10.1006/jmaa.2001.7756
Reference: [4] Gupta, C. P.: Solvability of multi-point boundary value problem at resonance.Result. Math. 28 (1995), 270-276. MR 1356893, 10.1007/BF03322257
Reference: [5] Kosmatov, N.: Multi-point boundary value problems on an unbounded domain at resonance.Nonlinear Anal., Theory Methods Appl. 68 (2008), 2158-2171. Zbl 1138.34006, MR 2398639, 10.1016/j.na.2007.01.038
Reference: [6] Liao, S. J.: A second-order approximate analytical solution of a simple pendulum by the process analysis method.J. Appl. Mech. 59 (1992), 970-975. Zbl 0769.70017, 10.1115/1.2894068
Reference: [7] Liu, B., Yu, J. S.: Solvability of multi-point boundary value problem at resonance III.Appl. Math. Comput. 129 (2002), 119-143. Zbl 1054.34033, MR 1897323, 10.1016/S0096-3003(01)00036-4
Reference: [8] Liu, Z., Debnath, L., Kang, S.: Existence of monotone positive solutions to a third order two-point generalized right focal boundary value problem.Comput. Math. Appl. 55 (2008), 356-367. Zbl 1155.34312, MR 2384152, 10.1016/j.camwa.2007.03.021
Reference: [9] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems.Regional Conference Series in Mathematics 40. AMS, Providence, RI (1979). Zbl 0414.34025, MR 0525202
Reference: [10] Mawhin, J., Ruiz, D.: A strongly nonlinear Neumann problem at resonance with restrictions on the nonlinearity just in one direction.Topol. Methods Nonlinear Anal. 20 (2002), 1-14. Zbl 1018.34016, MR 1940526, 10.12775/TMNA.2002.021
Reference: [11] Nasr, H., Hassanien, I. A., El-Hawary, H. M.: Chebyshev solution of laminar boundary layer flow.Int. J. Comput. Math. 33 (1990), 127-132. Zbl 0756.76058, 10.1080/00207169008803843
Reference: [12] Nieto, Juan J.: Existence of solutions in a cone for nonlinear alternative problems.Proc. Am. Math. Soc. 94 (1985), 433-436. Zbl 0585.47050, MR 0787888, 10.1090/S0002-9939-1985-0787888-1
Reference: [13] Rachůnková, I., Staněk, S.: Topological degree method in functional boundary value problems at resonance.Nonlinear Anal., Theory Methods Appl. 27 (1996), 271-285. Zbl 0853.34062, MR 1391437, 10.1016/0362-546X(95)00060-9
Reference: [14] Santanilla, J.: Some coincidence theorem in wedges, cones, and convex sets.J. Math. Anal. Appl. 105 (1985), 357-371. MR 0778471, 10.1016/0022-247X(85)90053-8
Reference: [15] Wong, P. J. Y.: Multiple fixed-sign solutions for a system of generalized right focal problems with deviating arguments.J. Math. Anal. Appl. 323 (2006), 100-118. Zbl 1107.34014, MR 2261154, 10.1016/j.jmaa.2005.10.016
.

Files

Files Size Format View
MathBohem_138-2013-4_2.pdf 315.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo