Previous |  Up |  Next

Article

Title: A note on weakly $(\mu ,\lambda )$-closed functions (English)
Author: Roy, Bishwambhar
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 4
Year: 2013
Pages: 397-405
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce a new class of functions called weakly $(\mu ,\lambda )$-closed functions with the help of generalized topology which was introduced by Á. Császár. Several characterizations and some basic properties of such functions are obtained. The connections between these functions and some other similar types of functions are given. Finally some comparisons between different weakly closed functions are discussed. This weakly $(\mu ,\lambda )$-closed functions enable us to facilitate the formulation of certain unified theories for different weaker forms of closed functions. (English)
Keyword: $\mu $-open set
Keyword: weakly $(\mu ,\lambda )$-closed function
Keyword: contra $(\mu ,\lambda )$-open function
Keyword: strongly $(\mu ,\lambda )$-continuous function
MSC: 54A05
MSC: 54C10
idZBL: Zbl 06260040
idMR: MR3231094
DOI: 10.21136/MB.2013.143512
.
Date available: 2013-11-09T20:25:23Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143512
.
Reference: [1] Caldas, M., Ekici, E., Jafari, S., Moshoka, S. P.: On weak $BR$-closed functions between topological spaces.Math. Commun. 14 (2009), 67-73. MR 2732586
Reference: [2] Császár, Á.: Generalized topology, generalized continuity.Acta Math. Hung. 96 (2002), 351-357. Zbl 1006.54003, MR 1922680, 10.1023/A:1019713018007
Reference: [3] Császár, Á.: Generalized open sets in generalized topologies.Acta Math. Hung. 106 (2005), 53-66. Zbl 1076.54500, MR 2127051, 10.1007/s10474-005-0005-5
Reference: [4] Császár, Á.: Normal generalized topologies.Acta Math. Hung. 115 (2007), 309-313. Zbl 1135.54301, MR 2327983, 10.1007/s10474-007-5249-9
Reference: [5] Császár, Á.: $\delta$- and $\theta$-modifications of generalized topologies.Acta Math. Hung. 120 (2008), 275-279. Zbl 1164.54003, MR 2429524, 10.1007/s10474-007-7136-9
Reference: [6] Császár, Á.: Remarks on quasi-topologies.Acta Math. Hung. 119 (2008), 197-200. Zbl 1164.54002, MR 2400806, 10.1007/s10474-007-7023-4
Reference: [7] Ekici, E.: Generalized hyperconnectedness.Acta Math. Hung. 133 (2011), 140-147. Zbl 1249.54003, MR 2827060, 10.1007/s10474-011-0086-2
Reference: [8] Ekici, E.: Generalization of weakly clopen and strongly $\theta$-$b$-continuous functions.Chaos Solitons Fractals 38 (2008), 79-88. Zbl 1142.54330, MR 2417645, 10.1016/j.chaos.2008.01.012
Reference: [9] Ergun, N., Noiri, T.: On weakly closed functions.Mat. Vesn. 42 (1990), 167-176. Zbl 0789.54016, MR 1163949
Reference: [10] Min, W. K.: A note on $\theta(g,g')$-continuity in generalized topological spaces.Acta Math. Hung. 125 (2009), 387-393. Zbl 1224.54039, MR 2564436, 10.1007/s10474-009-9075-0
Reference: [11] Njåstad, O.: On some classes of nearly open sets.Pac. J. Math. 15 (1965), 961-970. Zbl 0137.41903, MR 0195040, 10.2140/pjm.1965.15.961
Reference: [12] Noiri, T.: A generalization of closed mappings.Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 54(1973) (1974), 412-415. Zbl 0283.54001, MR 0358672
Reference: [13] Rose, D. A., Janković, D. S.: Weakly closed functions and Hausdorff spaces.Math. Nachr. 130 (1987), 105-110. Zbl 0622.54008, MR 0885619, 10.1002/mana.19871300109
Reference: [14] Roy, B.: On a type of generalized open sets.Appl. Gen. Topol. 12 (2011), 163-173. Zbl 1236.54019, MR 2864008
Reference: [15] Stone, M. H.: Application of the theory of Boolean rings to general Topology.Trans. Am. Math. Soc. 41 (1937), 375-481. MR 1501905, 10.1090/S0002-9947-1937-1501905-7
.

Files

Files Size Format View
MathBohem_138-2013-4_4.pdf 238.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo