Previous |  Up |  Next

Article

Title: Flows on the join of two graphs (English)
Author: Lukoťka, Robert
Author: Rollová, Edita
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 4
Year: 2013
Pages: 383-396
Summary lang: English
.
Category: math
.
Summary: The join of two graphs $G$ and $H$ is a graph formed from disjoint copies of $G$ and $H$ by connecting each vertex of $G$ to each vertex of $H$. We determine the flow number of the resulting graph. More precisely, we prove that the join of two graphs admits a nowhere-zero $3$-flow except for a few classes of graphs: a single vertex joined with a graph containing an isolated vertex or an odd circuit tree component, a single edge joined with a graph containing only isolated edges, a single edge plus an isolated vertex joined with a graph containing only isolated vertices, and two isolated vertices joined with exactly one isolated vertex plus some number of isolated edges. (English)
Keyword: nowhere-zero flow
Keyword: graph join
MSC: 05C21
idZBL: Zbl 06260039
idMR: MR3231093
DOI: 10.21136/MB.2013.143511
.
Date available: 2013-11-09T20:24:23Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143511
.
Reference: [1] Bondy, J. A., Murty, U. S. R.: Graph Theory.Graduate Texts in Mathematics 244 Springer, Berlin (2008). Zbl 1134.05001, MR 2368647, 10.1007/978-1-84628-970-5_1
Reference: [2] Chen, J. J., Eschen, E., Lai, H.-J.: Group connectivity of certain graphs.Ars Comb. 89 (2008), 141-158. Zbl 1224.05267, MR 2456240
Reference: [3] Diestel, R.: Graph Theory.Third ed. Graduate Texts in Mathematics 173 Springer, Berlin (2005). Zbl 1074.05001, MR 2159259
Reference: [4] Fan, G., Lai, H., Xu, R., Zhang, C.-Q., Zhou, Ch.: Nowhere-zero $3$-flows in triangularly connected graphs.J. Comb. Theory, Ser. B 98 (2008), 1325-1336. Zbl 1171.05026, MR 2462322, 10.1016/j.jctb.2008.02.008
Reference: [5] Imrich, W., Peterin, I., Špacarpan, S., Zhang, C.-Q.: NZ-flows in strong products of graphs.J. Graph Theory 64 (2010), 267-276. MR 2668543
Reference: [6] Imrich, W., Škrekovski, R.: A theorem on integer flows on Cartesian products of graphs.J. Graph Theory 43 (2003), 93-98. Zbl 1019.05058, MR 1978114, 10.1002/jgt.10100
Reference: [7] Jaeger, F.: Nowhere-zero flow problems.L. W. Beineke, R. J. Wilson Selected Topics in Graph Theory 3 Academic Press, San Diego, CA (1988), 71-95. Zbl 0658.05034, MR 1205397
Reference: [8] Jaeger, F., Linial, N., Payan, C., Tarsi, M.: Group connectivity of graphs---a nonhomogeneous analogue of nowhere-zero flow properties.J. Comb. Theory, Ser. B 56 (1992), 165-182. Zbl 0824.05043, MR 1186753, 10.1016/0095-8956(92)90016-Q
Reference: [9] Kochol, M.: Smallest counterexample to the 5-flow conjecture has girth at least eleven.J. Comb. Theory, Ser. B 100 (2010), 381-389. Zbl 1211.05055, MR 2644241, 10.1016/j.jctb.2009.12.001
Reference: [10] Nánásiová, M., Škoviera, M.: Nowhere-zero $3$-flows in Cayley graphs and Sylow $2$-subgroups.J. Algebr. Comb. 30 (2009), 103-111. Zbl 1208.05053, MR 2519851, 10.1007/s10801-008-0153-0
Reference: [11] Robertson, N., Seymour, P., Thomas, R.: Tutte's edge-colouring conjecture.J. Comb. Theory, Ser. B 70 (1997), 166-183. Zbl 0883.05055, MR 1441265, 10.1006/jctb.1997.1752
Reference: [12] Rollová, E., Škoviera, M.: Nowhere-zero flows in Cartesian bundles of graphs.Eur. J. Comb. 33 (2012), 867-871. Zbl 1293.05325, MR 2889520, 10.1016/j.ejc.2011.09.022
Reference: [13] Seymour, P. D.: Nowhere-zero $6$-flows.J. Comb. Theory, Ser. B 30 (1981), 130-135. Zbl 0474.05028, MR 0615308, 10.1016/0095-8956(81)90058-7
Reference: [14] Shahmohamad, H.: On minimum flow number of graphs.Bull. Inst. Comb. Appl. 35 (2002), 26-36. Zbl 0990.05072, MR 1901238
Reference: [15] Shu, J., Zhang, C.-Q.: Nowhere-zero $3$-flows in products of graphs.J. Graph Theory 50 (2005), 79-89. Zbl 1069.05040, MR 2157539, 10.1002/jgt.20095
Reference: [16] Steffen, E.: Circular flow numbers of regular multigraphs.J. Graph Theory 36 (2001), 24-34. Zbl 0982.05060, MR 1803631, 10.1002/1097-0118(200101)36:1<24::AID-JGT3>3.0.CO;2-Q
Reference: [17] Thomassen, C.: The weak $3$-flow conjecture and the weak circular flow conjecture.J. Comb. Theory, Ser. B 102 (2012), 521-529. Zbl 1239.05083, MR 2885433, 10.1016/j.jctb.2011.09.003
Reference: [18] Tutte, W. T.: On the imbedding of linear graphs in surfaces.Proc. Lond. Math. Soc., II. Ser. 51 (1949), 474-483. Zbl 0033.30803, MR 0029495, 10.1112/plms/s2-51.6.474
Reference: [19] Xu, R., Zhang, C.-Q.: Nowhere-zero $3$-flows in squares of graphs.Electron. J. Comb. 10 (2003), Research paper R5, 8 pages printed version J. Comb. 10 (2003). Zbl 1018.05031, MR 1975755
Reference: [20] Zhang, Z., Zheng, Y., Mamut, A.: Nowhere-zero flows in tensor product of graphs.J. Graph Theory 54 (2007), 284-292. Zbl 1121.05099, MR 2292666, 10.1002/jgt.20211
.

Files

Files Size Format View
MathBohem_138-2013-4_3.pdf 294.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo