Previous |  Up |  Next

Article

Title: $k$-Depth-nearest Neighbour Method and its Performance on Skew-normal Distributons (English)
Author: Vencálek, Ondřej
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 52
Issue: 2
Year: 2013
Pages: 121-129
Summary lang: English
.
Category: math
.
Summary: In the present paper we investigate performance of the $k$-depth-nearest classifier. This classifier, proposed recently by Vencálek, uses the concept of data depth to improve the classification method known as the $k$-nearest neighbour. Simulation study which is presented here deals with the two-class classification problem in which the considered distributions belong to the family of skewed normal distributions. (English)
Keyword: data depth
Keyword: classification
Keyword: k-nearest neighbour
Keyword: skewed normal distribution
MSC: 62G30
MSC: 62H30
idZBL: Zbl 06296020
idMR: MR3202385
.
Date available: 2013-12-18T15:26:31Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143544
.
Reference: [1] Azzalini, A., Della Valle, A.: The multivariate skew-normal distribution. Biometrika 83, 4 (1996), 715–726. MR 1440039, 10.1093/biomet/83.4.715
Reference: [2] Azzalini, A. R: package sn: The skew-normal and skew-t distributions (version 0.4-6). http://azzalini.stat.unipd.it/SN, 2006.
Reference: [3] Hlubinka, D.: Výpravy do hlubin dat. In: Antoch, J., Dohnal, G. (eds.): Sborník prací 15. letní školy JČMF ROBUST 2008, JČMF, Praha, 2009, 97–130, (in czech).
Reference: [4] Hubert, M., van der Veeken, S.: Fast and robust classifiers adjusted for skewness. In: Lechevallier, Y., Saporta, G. (eds.): COMPSTAT 2010: proceedings in computational statistics: 19th symposium held in Paris, France Springer, Heidelberg, 2010, 1135–1142.
Reference: [5] Li, J., Cuesta-Albertos, J. A., Liu, R. Y.: DD-classifier: nonparametric classification procedure based on DD-plot. Journal of the American Statistical Association 104, 498 (2012), 737–753. Zbl 1261.62058, MR 2980081, 10.1080/01621459.2012.688462
Reference: [6] Paindaveine, D., Van Bever, G.: Nonparametrically consistent depth-based classifiers. arXiv preprint arXiv:1204.2996, 2012.
Reference: [7] Vencálek, O.: Concept of Data Depth and Its Applications. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 50, 2 (2011), 111–119. Zbl 1244.62048, MR 2920713
Reference: [8] Vencálek, O.: Weighted data depth and depth based classification. PhD Thesis, MFF UK, Praha, 2011.
Reference: [9] Vencálek, O.: New depth-based modification of the $k$-nearest neighbour method. Informační bulletin České statistické společnosti, (2013), (to appear).
Reference: [10] Zuo, Y., Serfling, R.: General notion of statistical depth function. Annals of Statistics 28 (2000), 461–482. MR 1790005, 10.1214/aos/1016218226
.

Files

Files Size Format View
ActaOlom_52-2013-2_11.pdf 4.092Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo