Title:
|
A Note on Computing Extreme Tail Probabilities of the Noncentral $t$-Distribution with Large Noncentrality Parameter (English) |
Author:
|
Witkovský, Viktor |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
52 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
131-143 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The noncentral $t$-distribution is a generalization of the Student’s$t$-distribution. In this paper we suggest an alternative approach for computing the cumulative distribution function (CDF) of the noncentral$t$-distribution which is based on a direct numerical integration of a well behaved function. With a double-precision arithmetic, the algorithm provides highly precise and fast evaluation of the extreme tail probabilities of the noncentral $t$-distribution, even for large values of the noncentrality parameter $\delta $ and the degrees of freedom $\nu $. The implementation of the algorithm is available at the MATLAB Central, File Exchange: www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw. (English) |
Keyword:
|
noncentral $t$-distribution |
Keyword:
|
cumulative distribution function (CDF) |
Keyword:
|
noncentrality parameter |
Keyword:
|
extreme tail probability |
Keyword:
|
MATLAB algorithm |
MSC:
|
62-04 |
MSC:
|
62E15 |
idZBL:
|
Zbl 06296021 |
idMR:
|
MR3202386 |
. |
Date available:
|
2013-12-18T15:27:43Z |
Last updated:
|
2014-07-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143545 |
. |
Reference:
|
[1] Abramowitz M., Stegun I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Tenth Edition, National Bureau of Standards, 1972. Zbl 0543.33001 |
Reference:
|
[2] Airey, J. R., Irwin, J. O., Fisher, R. A.: Introduction to Tables of $Hh$ Functions. British Association for the Advancement of Science, Mathematical Tables 1, XXIV–XXXV, 1931. |
Reference:
|
[3] Benton D., Krishnamoorthy K.: Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral $t$ and the distribution of the square of the sample multiple correlation coefficient. Computational Statistics & Data Analysis 43 (2003), 249–267. MR 1985338, 10.1016/S0167-9473(02)00283-9 |
Reference:
|
[4] Bristow, P. A., Maddock, J.: DistExplorer: Statistical Distribution Explorer. Boost Software License, Edition: Version 1.0., 2012 http://sourceforge.net/projects/distexplorer/. |
Reference:
|
[5] Guenther, W. C.: Evaluation of probabilities for the noncentral distributions and the difference of two $t$ variables with a desk calculator. Journal of Statistical Computation and Simulation 6 (1978), 199–206. 10.1080/00949657808810188 |
Reference:
|
[6] Hahn, G. J., Meeker, G. J.: Statistical Intervals: A Guide for Practitioners. John Wiley & Sons, New York, 1991. Zbl 0850.62763 |
Reference:
|
[7] Holoborodko P.: Multiprecision Computing Toolbox for MATLAB. Advanpix, Yokohama. Edition: Version 3.4.3, 2013 http://www.advanpix.com. |
Reference:
|
[8] Inglot, T.: Inequalities for quantiles of the chi-square distribution. Probability and Mathematical Statistics 30 (2010), 339–351. Zbl 1231.62092, MR 2792589 |
Reference:
|
[9] Inglot, T., Ledwina, T.: Asymptotic optimality of a new adaptive test in regression model. Annales de l’Institut Henri Poincaré 42 (2006), 579–590. MR 2259976, 10.1016/j.anihpb.2005.05.002 |
Reference:
|
[10] Janiga, I., Garaj, I.: One-sided tolerance factors of normal distributions with unknown mean and variability. Measurement Science Review 8 (2006), 12–16. |
Reference:
|
[11] Johnson, N. L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, Volume 2. Second Edition, John Wiley & Sons, New York, 1995. MR 1326603 |
Reference:
|
[12] Kim, J.: Efficient Confidence Inteval Methodologies for the Noncentrality Parameters of the Noncentral $T$-Distributions. PhD Thesis, H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 2007. MR 2710174 |
Reference:
|
[13] Krishnamoorthy, K., Mathew, T.: Statistical Tolerance Regions: Theory, Applications, and Computation. John Wiley & Sons, New York, 2009. MR 2500599 |
Reference:
|
[14] Lenth, R. V.: Algorithm AS 243 – Cumulative distribution function of the non-central $t$ distribution. Applied Statistics 38 (1989), 185–189. 10.2307/2347693 |
Reference:
|
[15] Maddock, J., Bristow, P. A., Holin, H., Zhang, X., Lalande, B., Rade, J., Sewani, G., van den Berg, T., Sobotta, B.: Noncentral $T$ Distribution. Boost C++ Libraries, Edition: Version 1.53.0, 2012 http://www.boost.org. |
Reference:
|
[16] The MathWorks Inc.: MATLAB Edition: Version 8.0.0.783 (R2012b). Natick, Massachusetts, 2012 http://www.mathworks.com. |
Reference:
|
[17] R Development Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Edition: Version 3.0.0, Vienna, Austria, 2013 http://www.R-project.org. |
Reference:
|
[18] SAS Institute Inc.: PROBT Function. SAS(R) 9.3 Functions and CALL Routines: Reference. 2013 http://support.sas.com/. |
Reference:
|
[19] Student: The probable error of a mean. Biometrika 6 (1908), 1–25. 10.1093/biomet/6.1.1 |
Reference:
|
[20] Wolfram Research, Inc.: Mathematica Edition: Version 9.0. Wolfram Research, Inc., Champaign, Illinois, 2013 http://www.wolfram.com/mathematica/. |
. |