Previous |  Up |  Next

Article

Title: Left and right semi-uninorms on a complete lattice (English)
Author: Su, Yong
Author: Wang, Zhudeng
Author: Tang, Keming
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 6
Year: 2013
Pages: 948-961
Summary lang: English
.
Category: math
.
Summary: Uninorms are important generalizations of triangular norms and conorms, with a neutral element lying anywhere in the unit interval, and left (right) semi-uninorms are non-commutative and non-associative extensions of uninorms. In this paper, we firstly introduce the concepts of left and right semi-uninorms on a complete lattice and illustrate these notions by means of some examples. Then, we lay bare the formulas for calculating the upper and lower approximation left (right) semi-uninorms of a binary operation. Finally, we discuss the relations between the upper approximation left (right) semi-uninorms of a given binary operation and the lower approximation left (right) semi-uninorms of its dual operation. (English)
Keyword: fuzzy connective
Keyword: uninorm
Keyword: left (right) semi-uninorm
Keyword: upper (lower) approximation
MSC: 03B52
MSC: 03E72
MSC: 06B23
idZBL: Zbl 1286.03098
idMR: MR3182650
.
Date available: 2014-01-27T12:34:00Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143581
.
Reference: [1] Baets, B. De: Coimplicators, the forgotten connectives..Tatra Mountains Math. Publ. 12 (1997), 229-240. Zbl 0954.03029, MR 1607142
Reference: [2] Baets, B. De: Idempotent uninorms..European J. Oper. Res. 118 (1999), 631-642. Zbl 1178.03070, 10.1016/S0377-2217(98)00325-7
Reference: [3] Baets, B. De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: an alternative proof..Fuzzy Sets and Systems 104 (1999), 133-136. Zbl 0928.03060, MR 1685816
Reference: [4] Bassan, B., Spizzichino, F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes..J. Multivariate Anal. 93 (2005), 313-339. Zbl 1070.60015, MR 2162641, 10.1016/j.jmva.2004.04.002
Reference: [5] Birkhoff, G.: Lattice Theory..American Mathematical Society Colloquium Publishers, Providence 1967. Zbl 0537.06001, MR 0227053
Reference: [6] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra..Springer-Verlag, New York 1981. Zbl 0478.08001, MR 0648287
Reference: [7] Cooman, G. De, Kerre, E. E.: Order norms on bounded partially ordered sets..J. Fuzzy Math. 2 (1994), 281-310. Zbl 0814.04005, MR 1280148
Reference: [8] Durante, F., Klement, E. P., al., R. Mesiar et: Conjunctors and their residual implicators: characterizations and construct methods..Mediterranean J. Math. 4 (2007), 343-356. MR 2349892, 10.1007/s00009-007-0122-1
Reference: [9] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms..Internat. J. Uncertainly, Fuzziness and Knowledge-Based Systems 5 (1997), 411-427. Zbl 1232.03015, MR 1471619, 10.1142/S0218488597000312
Reference: [10] Gabbay, D., Metcalfe, G.: fuzzy logics based on $[0,1)$-continuous uninorms..Arch. Math. Logic 46 (2007), 425-449. Zbl 1128.03015, MR 2321585, 10.1007/s00153-007-0047-1
Reference: [11] Gottwald, S.: A Treatise on Many-Valued Logics..Studies in Logic and Computation Vol. 9, Research Studies Press, Baldock 2001. Zbl 1048.03002, MR 1856623
Reference: [12] Jenei, S.: A characterization theorem on the rotation construction for triangular norms..Fuzzy Sets and Systems 136 (2003), 283-289. Zbl 1020.03021, MR 1984578
Reference: [13] Jenei, S.: How to construct left-continuous triangular norms-state of the art..Fuzzy Sets and Systems 143 (2004), 27-45. Zbl 1040.03021, MR 2060271, 10.1016/j.fss.2003.06.006
Reference: [14] Jenei, S., Montagna, F.: A general method for constructing left-continuous $t$-norms..Fuzzy Sets and Systems 136 (2003), 263-282. Zbl 1020.03020, MR 1984577
Reference: [15] Liu, H. W.: Semi-uninorm and implications on a complete lattice..Fuzzy Sets and Systems 191 (2012), 72-82. MR 2874824
Reference: [16] Ma, Z., Wu, W. M.: Logical operators on complete lattices..Inform. Sci. 55 (1991), 77-97. Zbl 0741.03010, MR 1080449, 10.1016/0020-0255(91)90007-H
Reference: [17] Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms..Internat. J. Uncertainly, Fuzziness and Knowledge-Based Systems 9 (2001), 491-507. Zbl 1045.03029, MR 1852342, 10.1142/S0218488501000909
Reference: [18] Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms on a finite chain..Fuzzy Sets and Systems 146 (2004), 3-17. Zbl 1045.03029, MR 2074199
Reference: [19] Mas, M., Monserrat, M., Torrens, J.: Two types of implications derived from uninorms..Fuzzy Sets and Systems 158 (2007), 2612-2626. Zbl 1125.03018, MR 2363783
Reference: [20] Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms..Kybernetika 40 (2004), 21-38. Zbl 1249.94095, MR 2068596
Reference: [21] García, F. Suárez, Álvarez, P. Gil: Two families of fuzzy intergrals..Fuzzy Sets and Systems 18 (1986), 67-81. MR 0825620, 10.1016/0165-0114(86)90028-X
Reference: [22] Tsadiras, A. K., Margaritis, K. G.: the MYCIN certainty factor handling function as uninorm operator and its use as a threshold function in artificial neurons..Fuzzy Sets and Systems 93 (1998), 263-274. MR 1605312
Reference: [23] Wang, Z. D., Yu, Y. D.: Pseudo-$t$-norms and implication operators on a complete Brouwerian lattice..Fuzzy Sets and Systems 132 (2002), 113-124. Zbl 1013.03020, MR 1936220
Reference: [24] Wang, Z. D.: Generating pseudo-$t$-norms and implication operators..Fuzzy Sets and Systems 157 (2006), 398-410. Zbl 1085.03020, MR 2186235, 10.1016/j.fss.2005.05.047
Reference: [25] Wang, Z. D., Fang, J. X.: Residual operators of left and right uninorms on a complete lattice..Fuzzy Sets and Systems 160 (2009), 22-31. MR 2469427
Reference: [26] Wang, Z. D., Fang, J. X.: Residual coimplicators of left and right uninorms on a complete lattice..Fuzzy Sets and Systems 160 (2009), 2086-2096. Zbl 1183.03027, MR 2555022
Reference: [27] Yager, R. R.: Uninorms in fuzzy system modeling..Fuzzy Sets and Systems 122 (2001), 167-175. MR 1839955, 10.1016/S0165-0114(00)00027-0
Reference: [28] Yager, R. R.: Defending against strategic manipulation in uninorm-based multi-agent decision making..European J. Oper. Res. 141 (2002), 217-232. Zbl 0998.90046, MR 1925395, 10.1016/S0377-2217(01)00267-3
Reference: [29] Yager, R. R., Kreinovich, V.: Universal approximation theorem for uninorm-based fuzzy systems modeling..Fuzzy Sets and Systems 140 (2003), 331-339. Zbl 1040.93043, MR 2021449
Reference: [30] Yager, R. R., Rybalov, A.: Uninorm aggregation operators..Fuzzy Sets and Systems 80 (1996), 111-120. Zbl 0871.04007, MR 1389951, 10.1016/0165-0114(95)00133-6
.

Files

Files Size Format View
Kybernetika_49-2013-6_8.pdf 273.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo