Previous |  Up |  Next

Article

Title: Fuzzy empirical distribution function: Properties and application (English)
Author: Hesamian, Gholamreza
Author: Taheri, S. M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 6
Year: 2013
Pages: 962-982
Summary lang: English
.
Category: math
.
Summary: The concepts of cumulative distribution function and empirical distribution function are investigated for fuzzy random variables. Some limit theorems related to such functions are established. As an application of the obtained results, a method of handling fuzziness upon the usual method of Kolmogorov-Smirnov one-sample test is proposed. We transact the $\alpha$-level set of imprecise observations in order to extend the usual method of Kolmogorov-Smirnov one-sample test. To do this, the concepts of fuzzy Kolmogorov-Smirnov one-sample test statistic and p-value are extended to the fuzzy Kolmogorov-Smirnov one-sample test statistic and fuzzy p-value, respectively. Finally, a preference degree between two fuzzy numbers is employed for comparing the observed fuzzy p-value and the given fuzzy significance level, in order to accept or reject the null hypothesis of interest. Some numerical examples are provided to clarify the discussions in this paper. (English)
Keyword: fuzzy cumulative distribution function
Keyword: fuzzy empirical distribution function
Keyword: Kolmogorov–Smirnov test
Keyword: fuzzy p-value
Keyword: convergence with probability one
Keyword: degree of accept
Keyword: degree of reject
Keyword: Glivenko–Cantelli theorem
MSC: 62A10
MSC: 62G10
MSC: 62G86
MSC: 93C42
MSC: 93C57
MSC: 93E12
idZBL: Zbl 1284.93240
idMR: MR3182651
.
Date available: 2014-01-27T12:35:59Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143582
.
Reference: [1] Arefi, M., Viertl, R., Taheri, S. M.: Fuzzy density estimation..Metrika 75 (2012), 5-22. Zbl 1241.62040, MR 2878105, 10.1007/s00184-010-0311-y
Reference: [2] Bzowski, A., Urbanski, M. K.: Convergence, strong law of large numbers, and measurement theory in the language of fuzzy variables..http://arxiv.org/abs/0903.0959
Reference: [3] Denoeux, T., Masson, M. H., Herbert, P. H.: Non-parametric rank-based statistics and significance tests for fuzzy data..Fuzzy Sets and Systems 153 (2005), 1-28. MR 2202121
Reference: [4] Dubois, D., Prade, H.: Operation on fuzzy numbers..Internat. J. System Sci. 9 (1978), 613-626. MR 0491199, 10.1080/00207727808941724
Reference: [5] Dubois, D., Prade, H.: Ranking of fuzzy numbers in the setting of possibility theory..Inform. Sci. 30 (1983), 183-224. MR 0730910, 10.1016/0020-0255(83)90025-7
Reference: [6] Filzmoser, P., Viertl, R.: Testing hypotheses with fuzzy data: the fuzzy p-value..Metrika 59 (2004), 21-29. Zbl 1052.62009, MR 2043430, 10.1007/s001840300269
Reference: [7] Gibbons, J. D., Chakraborti, S.: Non-parametric Statistical Inference. Fourth edition..Marcel Dekker, New York 2003. MR 2064386
Reference: [8] Gil, M. A.: Fuzzy random variables: Development and state of the art..In: Mathematics of Fuzzy Systems, Proc. Linz Seminar on Fuzzy Set Theory. Linz 2004, pp. 11-15.
Reference: [9] Govindarajulu, Z.: Non-parametric Inference..Hackensack, World Scientific 2007.
Reference: [10] Grzegorzewski, P.: Statistical inference about the median from vague data..Control Cybernet. 27 (1998), 447-464. Zbl 0945.62038, MR 1663896
Reference: [11] Grzegorzewski, P.: Two-sample median test for vague data..In: Proc. 4th Conf. European Society for Fuzzy Logic and Technology-Eusflat, Barcelona 2005, pp. 621-626.
Reference: [12] Grzegorzewski, P.: K-sample median test for vague data..Internat. J. Intelligent Systems 24 (2009), 529-539. Zbl 1160.62039, 10.1002/int.20345
Reference: [13] Grzegorzewski, P.: Distribution-free tests for vague data..In: Soft Methodology and Random Information Systems (M. Lopez-Diaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry (eds.), Springer, Heidelberg 2004, pp. 495-502. Zbl 1064.62052, MR 2118134
Reference: [14] Grzegorzewski, P.: A bi-robust test for vague data..In: Proc. of the Twelfth International Conference on Information Proc. and Management of Uncertainty in Knowledge-Based Systems, IPMU'08 (L. Magdalena, M. Ojeda-Aciego, J. L. Verdegay, eds.), Torremolinos 2008, pp. 138-144.
Reference: [15] Hesamian, G., Taheri, S. M.: Linear rank tests for two-sample fuzzy data: a p-value approach..J. Uncertainty Systems 7 (2013), 129-137.
Reference: [16] Holena, M.: Fuzzy hypotheses testing in a framework of fuzzy logic..Fuzzy Sets and Systems 145 (2004), 229-252. MR 2073999, 10.1016/S0165-0114(03)00208-2
Reference: [17] Hryniewicz, O.: Goodman-Kruskal $\gamma$ measure of dependence for fuzzy ordered categorical data..Comput. Statist. Data Anal. 51 (2006), 323-334. Zbl 1157.62424, MR 2297603, 10.1016/j.csda.2006.04.014
Reference: [18] Hryniewicz, O.: Possibilistic decisions and fuzzy statistical tests..Fuzzy Sets and Systems 157 (2006), 2665-2673. Zbl 1099.62008, MR 2328390
Reference: [19] Kahraman, C., Bozdag, C. F., Ruan, D.: Fuzzy sets approaches to statistical parametric and non-parametric tests..Internat. J. Intelligent Systems 19 (2004), 1069-1078. 10.1002/int.20037
Reference: [20] Klement, E. P., Puri, M. L., Ralescu, D. A.: Limit theorems for fuzzy random variables..Proc. Roy. Soc. London Ser. A 407 (1986), 171-182. Zbl 0605.60038, MR 0861082
Reference: [21] Krätschmer, V.: Probability theory in fuzzy sample spaces..Metrika 60 (2004), 167-189. Zbl 1083.60004, MR 2088738, 10.1007/s001840300303
Reference: [22] Kruse, R., Meyer, K. D.: Statistics with Vague Data..Reidel Publishing Company, Dordrecht 1987. Zbl 0663.62010, MR 0913303
Reference: [23] Lee, K. H.: First Course on Fuzzy Theory and Applications..Springer, Heidelberg 2005. Zbl 1063.94129
Reference: [24] Li, S., Ogura, Y.: Strong laws of large numbers for independent fuzzy set-valued random variables..Fuzzy Sets and Systems 157 (2006), 2569-2578. Zbl 1104.60307, MR 2328383
Reference: [25] Kvam, P. H., Vidadovic, B.: Non-parametric Statistics with Application to Science and Engineering..J. Wiley, New Jersey 2007.
Reference: [26] Mareš, M.: Fuzzy data in statistics..Kybernetika 43 (2007), 491-502. Zbl 1134.62001, MR 2377927
Reference: [27] Nguyen, H., Wang, T., Wu, B.: On probabilistic methods in fuzzy theory..Internat. J. Intelligent Systems 19 (2004), 99-109. Zbl 1101.68874, 10.1002/int.10154
Reference: [28] Parchami, A., Taheri, S. M., Mashinchi, M.: Fuzzy p-value in testing fuzzy hypotheses with crisp data..Statist. Papers 51 (2010), 209-226. Zbl 1247.62105, MR 2556596, 10.1007/s00362-008-0133-4
Reference: [29] Parthasarathy, K. R.: Probability Measurs on Metric Space..Academic Press, New York 1967. MR 0226684
Reference: [30] Puri, M. L., Ralescu, D. A.: Fuzzy random variables..J. Math. Anal. Appl. 361 (1986), 409-422. Zbl 0605.60038, MR 0833596, 10.1016/0022-247X(86)90093-4
Reference: [31] Shapiro, A. F.: Fuzzy random variables..Insurance: Math. and Econom. 44 (2009), 307-314. Zbl 1206.93062, MR 2517895
Reference: [32] Taheri, S. M., Hesamian, G.: Goodman-Kruskal measure of association for fuzzy-categorized variables..Kybernetika 47 (2011), 110-122. Zbl 1213.93199, MR 2807868
Reference: [33] Taheri, S. M., Hesamian, G.: A generalization of the Wilcoxon signed-rank test and its applications..Statist. Papers 54 (2013), 457-470. MR 3043300, 10.1007/s00362-012-0443-4
Reference: [34] Viertl, R.: Univariate statistical analysis with fuzzy data..Comput. Statist. Data Anal. 51 (2006), 133-147. Zbl 1157.62368, MR 2297592, 10.1016/j.csda.2006.04.002
Reference: [35] Viertl, R.: Statistical Methods for Fuzzy Data..J. Wiley, Chichester 2011. Zbl 1101.62003, MR 2759969
Reference: [36] Wang, X., Kerre, E.: Reasonable properties for the ordering of fuzzy quantities (II)..Fuzzy Sets and Systems 118 (2001), 387-405. Zbl 0971.03055, MR 1809387
Reference: [37] Wu, H. C.: Statistical hypotheses testing for fuzzy data..Fuzzy Sets and Systems 175 (2005), 30-56. Zbl 1081.62012, MR 2161302
Reference: [38] Yoan, Y.: Criteria for evaluating fuzzy ranking methods..Fuzzy Sets and Systems 43 (1991), 139-157. MR 1127998, 10.1016/0165-0114(91)90073-Y
.

Files

Files Size Format View
Kybernetika_49-2013-6_9.pdf 3.378Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo