Previous |  Up |  Next

Article

Title: A sharp maximal inequality for continuous martingales and their differential subordinates (English)
Author: Osękowski, Adam
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 1001-1018
Summary lang: English
.
Category: math
.
Summary: Assume that $X$, $Y$ are continuous-path martingales taking values in $\mathbb R^\nu $, $\nu \geq 1$, such that $Y$ is differentially subordinate to $X$. The paper contains the proof of the maximal inequality $$ \|\sup _{t\geq 0} |Y_t| \|_1\leq 2\|\sup _{t\geq 0} |X_t| \|_1. $$ The constant $2$ is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder's method and rests on the construction of an appropriate special function. (English)
Keyword: martingale
Keyword: stochastic integral
Keyword: maximal inequality
Keyword: differential subordination
MSC: 60G44
MSC: 60G46
idZBL: Zbl 06373958
idMR: MR3165511
DOI: 10.1007/s10587-013-0068-3
.
Date available: 2014-01-28T14:13:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143613
.
Reference: [1] Bañuelos, R., Méndez-Hernandez, P. J.: Space-time Brownian motion and the Beurling-Ahlfors transform.Indiana Univ. Math. J. 52 (2003), 981-990. Zbl 1080.60043, MR 2001941, 10.1512/iumj.2003.52.2218
Reference: [2] Bañuelos, R., Wang, G.: Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms.Duke Math. J. 80 (1995), 575-600. Zbl 0853.60040, MR 1370109, 10.1215/S0012-7094-95-08020-X
Reference: [3] Burkholder, D. L.: Boundary value problems and sharp inequalities for martingale transforms.Ann. Probab. 12 (1984), 647-702. Zbl 0556.60021, MR 0744226, 10.1214/aop/1176993220
Reference: [4] Burkholder, D. L.: A sharp and strict $L^p$-inequality for stochastic integrals.Ann. Probab. 15 (1987), 268-273. MR 0877602, 10.1214/aop/1176992268
Reference: [5] Burkholder, D. L.: Explorations in martingale theory and its applications.Calcul des Probabilités Ec. d'Été, Saint-Flour/Fr. 1989, Lect. Notes Math. 1464 1-66 (1991), Springer, Berlin. Zbl 0771.60033, MR 1108183, 10.1007/BFb0085167
Reference: [6] Burkholder, D. L.: Sharp norm comparison of martingale maximal functions and stochastic integrals.Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994) 343-358 Proc. Sympos. Appl. Math., 52, Amer. Math. Soc. Providence, RI (1997). Zbl 0899.60040, MR 1440921
Reference: [7] Dellacherie, C., Meyer, P. A.: Probabilities and Potential. B: Theory of Martingales.Transl. from the French and prep. by J. P. Wilson North-Holland Mathematics Studies, Amsterdam (1982). Zbl 0494.60002, MR 0745449
Reference: [8] Geiss, S., Montgomery-Smith, S., Saksman, E.: On singular integral and martingale transforms.Trans. Am. Math. Soc. 362 (2010), 553-575. Zbl 1196.60078, MR 2551497, 10.1090/S0002-9947-09-04953-8
Reference: [9] Nazarov, F. L., Volberg, A.: Heat extension of the Beurling operator and estimates for its norm.Algebra i Analiz 15 (2003), 142-158 Russian translation in St. Petersburg Math. J. 15 (2004), 563-573. MR 2068982
Reference: [10] Osękowski, A.: Sharp LlogL inequality for differentially subordinated martingales.Illinois J. Math. 52 (2008), 745-756. MR 2546005, 10.1215/ijm/1254403712
Reference: [11] Osękowski, A.: Sharp inequality for martingale maximal functions and stochastic integrals.Illinois J. Math. 54 (2010), 1133-1156. Zbl 1260.60081, MR 2928348, 10.1215/ijm/1336049987
Reference: [12] Osękowski, A.: Maximal inequalities for continuous martingales and their differential subordinates.Proc. Am. Math. Soc. 139 (2011), 721-734. Zbl 1219.60044, MR 2736351, 10.1090/S0002-9939-2010-10539-7
Reference: [13] Osękowski, A.: Maximal inequalities for martingales and their differential subordinates.(to appear) in J. Theor. Probab. DOI:10.1007/s10959-012-0458-8. 10.1007/s10959-012-0458-8
Reference: [14] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion.3rd ed., Grundlehren der Mathematischen Wissenschaften 293 Springer, Berlin, 1999. Zbl 1087.60040, MR 1725357
Reference: [15] Suh, Y.: A sharp weak type $(p,p)$ inequality $(p>2)$ for martingale transforms and other subordinate martingales.Trans. Am. Math. Soc. 357 (2005), 1545-1564. Zbl 1061.60042, MR 2115376, 10.1090/S0002-9947-04-03563-9
Reference: [16] Wang, G.: Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities.Ann. Probab. 23 (1995), 522-551. Zbl 0832.60055, MR 1334160, 10.1214/aop/1176988278
.

Files

Files Size Format View
CzechMathJ_63-2013-4_11.pdf 317.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo