Previous |  Up |  Next

Article

Title: Subgroups of odd depth—a necessary condition (English)
Author: Burciu, Sebastian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 1039-1048
Summary lang: English
.
Category: math
.
Summary: This paper gives necessary and sufficient conditions for subgroups with trivial core to be of odd depth. We show that a subgroup with trivial core is an odd depth subgroup if and only if certain induced modules from it are faithful. Algebraically this gives a combinatorial condition that has to be satisfied by the subgroups with trivial core in order to be subgroups of a given odd depth. The condition can be expressed as a certain matrix with $\{0,1\}$-entries to have maximal rank. The entries of the matrix correspond to the sizes of the intersections of the subgroup with any of its conjugate. (English)
Keyword: depth of group algebras
Keyword: finite group
Keyword: faithful representation
MSC: 34B16
MSC: 34C25
idZBL: Zbl 1299.20001
idMR: MR3165513
DOI: 10.1007/s10587-013-0070-9
.
Date available: 2014-01-28T14:15:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143615
.
Reference: [1] Boltje, R., Danz, S., Külshammer, B.: On the depth of subgroups and group algebra extensions.J. Algebra 335 (2011), 258-281. Zbl 1250.20001, MR 2792576, 10.1016/j.jalgebra.2011.03.019
Reference: [2] Boltje, R., Külshammer, B.: On the depth $2$ condition for group algebra and Hopf algebra extensions.J. Algebra 323 (2010), 1783-1796. Zbl 1200.16035, MR 2588139, 10.1016/j.jalgebra.2009.11.043
Reference: [3] Bourgain, J., Vu, V. H., Wood, P. M.: On the singularity probability of discrete random matrices.J. Funct. Anal. 258 (2010), 559-603. Zbl 1186.60003, MR 2557947, 10.1016/j.jfa.2009.04.016
Reference: [4] Burciu, S., Kadison, L.: Subgroups of depth three.Perspectives in Mathematics and Physics: Essays Dedicated to Isadore Singer's 85th Birthday T. Mrowka et al. Surveys in Differential Geometry 15 International Press, Somerville (2011), 17-36. Zbl 1242.16028, MR 2815724
Reference: [5] Burciu, S., Kadison, L., Külshammer, B.: On subgroup depth. (With an appendix by S. Danz and B. Külshammer).Int. Electron. J. Algebra (electronic only) 9 (2011), 133-166. Zbl 1266.20001, MR 2753764
Reference: [6] Gantmakher, F. R.: Matrix theory.With an appendix by V. B. Lidskij. With a preface by D. P. Želobenko. Translated from the second Russian edition by H. Boseck, D. Soyka and K. Stengert, Hochschulbücher für Mathematik, Bd. 86 VEB Deutscher Verlag der Wissenschaften, Berlin (1986), German. MR 0869996
Reference: [7] Goodman, F. M., Harpe, P. De la, Jones, V. F. R.: Coxeter Graphs and Towers of Algebras.Mathematical Sciences Research Institute Publications 14 Springer, New York (1989). Zbl 0698.46050, MR 0999799, 10.1007/978-1-4613-9641-3
Reference: [8] Kadison, L., Külshammer, B.: Depth two, normality and a trace ideal condition for Frobenius extensions.Commun. Algebra 34 (2006), 3103-3122. Zbl 1115.16020, MR 2252660, 10.1080/00927870600650291
Reference: [9] Metropolis, N., Stein, P. R.: On a class of $(0,1)$ matrices with vanishing determinants.J. Comb. Theory. 3 (1967), 191-198. Zbl 0153.02301, MR 0211889, 10.1016/S0021-9800(67)80006-1
Reference: [10] Rieffel, M. A.: Normal subrings and induced representations.J. Algebra 59 (1979), 364-386. Zbl 0496.16035, MR 0543256, 10.1016/0021-8693(79)90133-9
Reference: [11] Živković, M.: Classification of small $(0,1)$ matrices.Linear Algebra Appl. 414 (2006), 310-346. Zbl 1091.15022, MR 2209249, 10.1016/j.laa.2005.10.010
.

Files

Files Size Format View
CzechMathJ_63-2013-4_13.pdf 260.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo