Previous |  Up |  Next

Article

Title: On the Hilbert $2$-class field tower of some abelian $2$-extensions over the field of rational numbers (English)
Author: Azizi, Abdelmalek
Author: Mouhib, Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 4
Year: 2013
Pages: 1135-1148
Summary lang: English
.
Category: math
.
Summary: It is well known by results of Golod and Shafarevich that the Hilbert $2$-class field tower of any real quadratic number field, in which the discriminant is not a sum of two squares and divisible by eight primes, is infinite. The aim of this article is to extend this result to any real abelian $2$-extension over the field of rational numbers. So using genus theory, units of biquadratic number fields and norm residue symbol, we prove that for every real abelian $2$-extension over $\mathbb Q$ in which eight primes ramify and one of theses primes $\equiv -1\pmod 4$, the Hilbert $2$-class field tower is infinite. (English)
Keyword: class group
Keyword: class field tower
Keyword: multiquadratic number field
MSC: 11R11
MSC: 11R29
MSC: 11R37
idZBL: Zbl 06373965
idMR: MR3165518
DOI: 10.1007/s10587-013-0075-4
.
Date available: 2014-01-28T14:25:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143620
.
Reference: [1] III., F. Gerth: Some real quadratic fields with infinite Hilbert $2$-class field towers.Jap. J. Math., New Ser. 31 (2005), 175-181. Zbl 1075.11066, MR 2153730, 10.4099/math1924.31.175
Reference: [2] Golod, E. S., Shafarevich, I. R.: On the class field tower.Izv. Akad. Nauk SSSR, Ser. Mat. 28 (1964), 261-272 Russian; English translation in Transl., Ser. 2, Am. Math. Soc. 48 (1965), 91-102. MR 0161852
Reference: [3] Hasse, H.: Neue Begründung und Verallgemeinerung der Theorie des Normenrestsymbols.J. f. M. 162 (1930), 134-144 German.
Reference: [4] Ishida, M.: The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics 555.Springer Berlin (1976). MR 0435028
Reference: [5] Jehne, W.: On knots in algebraic number theory.J. Reine Angew. Math. 311-312 (1979), 215-254. Zbl 0432.12006, MR 0549967
Reference: [6] Kuroda, S.: Über den Dirichletschen Körper.J. Fac. Sci. Univ. Tokyo, Sect. I 4 (1943), 383-406 German. Zbl 0061.05901, MR 0021031
Reference: [7] Kuz'min, L. V.: Homologies of profinite groups, the Schur multiplicator and class field theory.Izv. Akad. Nauk. SSSR Ser. Mat. 33 (1969), 1220-1254 Russian. MR 0255511
Reference: [8] Maire, C.: A refinement of the Golod-Shafarevich theorem. (Un raffinement du théoreme de Golod-Šafarevič).Nagoya Math. J. 150 (1998), 1-11 French. MR 1633138
Reference: [9] Mouhib, A.: On the Hilbert $2$-class field tower of real quadratic fields. (Sur la tour des $2$-corps de classes de Hilbert des corps quadratiques réels).Ann. Sci. Math. Qu. 28 (2004), 179-187 French. MR 2183105
.

Files

Files Size Format View
CzechMathJ_63-2013-4_18.pdf 285.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo