Title:
|
Dependence on the parameters of the set of trajectories of the control system described by a nonlinear Volterra integral equation (English) |
Author:
|
Huseyin, Anar |
Author:
|
Huseyin, Nesir |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
59 |
Issue:
|
3 |
Year:
|
2014 |
Pages:
|
303-317 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper the control system with limited control resources is studied, where the behavior of the system is described by a nonlinear Volterra integral equation. The admissible control functions are chosen from the closed ball centered at the origin with radius $\mu $ in $L_p$ $(p>1)$. It is proved that the set of trajectories generated by all admissible control functions is Lipschitz continuous with respect to $\mu $ for each fixed $p$, and is continuous with respect to $p$ for each fixed $\mu $. An upper estimate for the diameter of the set of trajectories is given. (English) |
Keyword:
|
nonlinear Volterra integral equation |
Keyword:
|
control system |
Keyword:
|
integral constraint |
MSC:
|
45D05 |
MSC:
|
93B03 |
MSC:
|
93C23 |
idZBL:
|
Zbl 06362228 |
idMR:
|
MR3232632 |
DOI:
|
10.1007/s10492-014-0056-4 |
. |
Date available:
|
2014-05-20T07:36:15Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143774 |
. |
Reference:
|
[1] Bock, I., Lovíšek, J.: On a reliable solution of a Volterra integral equation in a Hilbert space.Appl. Math., Praha 48 (2003), 469-486. Zbl 1099.45001, MR 2025957, 10.1023/B:APOM.0000024487.48855.d9 |
Reference:
|
[2] Conti, R.: Problemi di Controllo e di Controllo Ottimale.UTET Torino (1974). |
Reference:
|
[3] Guseinov, K. G.: Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 622-645. Zbl 1162.93005, MR 2518068, 10.1016/j.na.2008.10.097 |
Reference:
|
[4] Guseinov, K. G., Nazlipinar, A. S.: On the continuity properties of the attainable sets of nonlinear control systems with integral constraint on controls.Abstr. Appl. Anal. 2008 (2008), Article ID 295817. MR 2393114 |
Reference:
|
[5] Guseinov, K. G., Nazlipinar, A. S.: On the continuity property of $L_p$ balls and an application.J. Math. Anal. Appl. 335 (2007), 1347-1359. Zbl 1122.49015, MR 2346910, 10.1016/j.jmaa.2007.01.109 |
Reference:
|
[6] Hlaváček, I.: Reliable solutions of problems in the deformation theory of plasticity with respect to uncertain material function.Appl. Math., Praha 41 (1996), 447-466. MR 1415251 |
Reference:
|
[7] Huseyin, A., Huseyin, N.: Precompactness of the set of trajectories of the controllable system described by a nonlinear Volterra integral equation.Math. Model. Anal. 17 (2012), 686-695. Zbl 1255.93070, MR 3001166, 10.3846/13926292.2012.736088 |
Reference:
|
[8] Krasnosel'skij, M. A., Krejn, S. G.: On the principle of averaging in nonlinear mechanics.Usp. Mat. Nauk. 10 (1955), 147-152 Russian. MR 0071596 |
Reference:
|
[9] Krasovskij, N. N.: Theory of Motion Control. Linear Systems.Nauka Moskva (1968), Russian. Zbl 0172.12702 |
Reference:
|
[10] Lakshmikantham, V.: Existence and comparison results for Volterra integral equations in a Banach space.Volterra Equations. Proc. Helsinki Symp., Otaniemi/Finland 1978 Lecture Notes in Mathematics 737 Springer, Berlin (1979), 120-126. Zbl 0418.45015, MR 0551035, 10.1007/BFb0064502 |
Reference:
|
[11] Miller, R. K.: Nonlinear Volterra Integral Equations.Mathematics Lecture Note Series W. A. Benjamin, Menlo Park (1971). Zbl 0448.45004, MR 0511193 |
Reference:
|
[12] Minorsky, N.: Introduction to Non-Linear Mechanics.J. W. Edwards Ann Arbor (1947). MR 0020689 |
Reference:
|
[13] Orlicz, W., Szufla, S.: On some classes of nonlinear Volterra integral equations in Banach spaces.Bull. Acad. Pol. Sci., Sér. Sci. Math. 30 (1982), 239-250. Zbl 0501.45013, MR 0673260 |
Reference:
|
[14] Polyanin, A. D., Manzhirov, A. V.: Handbook of Integral Equations.CRC Press Boca Raton (1998). Zbl 0896.45001, MR 1790925 |
Reference:
|
[15] Väth, M.: Volterra and Integral Equations of Vector Functions.Monographs and Textbooks in Pure and Applied Mathematics 224 Marcel Dekker, New York (2000). Zbl 0940.45002, MR 1738341 |
. |