Previous |  Up |  Next

Article

Title: Dependence on the parameters of the set of trajectories of the control system described by a nonlinear Volterra integral equation (English)
Author: Huseyin, Anar
Author: Huseyin, Nesir
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 3
Year: 2014
Pages: 303-317
Summary lang: English
.
Category: math
.
Summary: In this paper the control system with limited control resources is studied, where the behavior of the system is described by a nonlinear Volterra integral equation. The admissible control functions are chosen from the closed ball centered at the origin with radius $\mu $ in $L_p$ $(p>1)$. It is proved that the set of trajectories generated by all admissible control functions is Lipschitz continuous with respect to $\mu $ for each fixed $p$, and is continuous with respect to $p$ for each fixed $\mu $. An upper estimate for the diameter of the set of trajectories is given. (English)
Keyword: nonlinear Volterra integral equation
Keyword: control system
Keyword: integral constraint
MSC: 45D05
MSC: 93B03
MSC: 93C23
idZBL: Zbl 06362228
idMR: MR3232632
DOI: 10.1007/s10492-014-0056-4
.
Date available: 2014-05-20T07:36:15Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143774
.
Reference: [1] Bock, I., Lovíšek, J.: On a reliable solution of a Volterra integral equation in a Hilbert space.Appl. Math., Praha 48 (2003), 469-486. Zbl 1099.45001, MR 2025957, 10.1023/B:APOM.0000024487.48855.d9
Reference: [2] Conti, R.: Problemi di Controllo e di Controllo Ottimale.UTET Torino (1974).
Reference: [3] Guseinov, K. G.: Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 622-645. Zbl 1162.93005, MR 2518068, 10.1016/j.na.2008.10.097
Reference: [4] Guseinov, K. G., Nazlipinar, A. S.: On the continuity properties of the attainable sets of nonlinear control systems with integral constraint on controls.Abstr. Appl. Anal. 2008 (2008), Article ID 295817. MR 2393114
Reference: [5] Guseinov, K. G., Nazlipinar, A. S.: On the continuity property of $L_p$ balls and an application.J. Math. Anal. Appl. 335 (2007), 1347-1359. Zbl 1122.49015, MR 2346910, 10.1016/j.jmaa.2007.01.109
Reference: [6] Hlaváček, I.: Reliable solutions of problems in the deformation theory of plasticity with respect to uncertain material function.Appl. Math., Praha 41 (1996), 447-466. MR 1415251
Reference: [7] Huseyin, A., Huseyin, N.: Precompactness of the set of trajectories of the controllable system described by a nonlinear Volterra integral equation.Math. Model. Anal. 17 (2012), 686-695. Zbl 1255.93070, MR 3001166, 10.3846/13926292.2012.736088
Reference: [8] Krasnosel'skij, M. A., Krejn, S. G.: On the principle of averaging in nonlinear mechanics.Usp. Mat. Nauk. 10 (1955), 147-152 Russian. MR 0071596
Reference: [9] Krasovskij, N. N.: Theory of Motion Control. Linear Systems.Nauka Moskva (1968), Russian. Zbl 0172.12702
Reference: [10] Lakshmikantham, V.: Existence and comparison results for Volterra integral equations in a Banach space.Volterra Equations. Proc. Helsinki Symp., Otaniemi/Finland 1978 Lecture Notes in Mathematics 737 Springer, Berlin (1979), 120-126. Zbl 0418.45015, MR 0551035, 10.1007/BFb0064502
Reference: [11] Miller, R. K.: Nonlinear Volterra Integral Equations.Mathematics Lecture Note Series W. A. Benjamin, Menlo Park (1971). Zbl 0448.45004, MR 0511193
Reference: [12] Minorsky, N.: Introduction to Non-Linear Mechanics.J. W. Edwards Ann Arbor (1947). MR 0020689
Reference: [13] Orlicz, W., Szufla, S.: On some classes of nonlinear Volterra integral equations in Banach spaces.Bull. Acad. Pol. Sci., Sér. Sci. Math. 30 (1982), 239-250. Zbl 0501.45013, MR 0673260
Reference: [14] Polyanin, A. D., Manzhirov, A. V.: Handbook of Integral Equations.CRC Press Boca Raton (1998). Zbl 0896.45001, MR 1790925
Reference: [15] Väth, M.: Volterra and Integral Equations of Vector Functions.Monographs and Textbooks in Pure and Applied Mathematics 224 Marcel Dekker, New York (2000). Zbl 0940.45002, MR 1738341
.

Files

Files Size Format View
AplMat_59-2014-3_5.pdf 264.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo