Previous |  Up |  Next

Article

Title: The irrelevant information principle for collective probabilistic reasoning (English)
Author: Adamčík, Martin
Author: Wilmers, George
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 2
Year: 2014
Pages: 175-188
Summary lang: English
.
Category: math
.
Summary: Within the framework of discrete probabilistic uncertain reasoning a large literature exists justifying the maximum entropy inference process, $\operatorname{\mathbf{ME}}$, as being optimal in the context of a single agent whose subjective probabilistic knowledge base is consistent. In particular Paris and Vencovská completely characterised the $\operatorname{\mathbf{ME}}$ inference process by means of an attractive set of axioms which an inference process should satisfy. More recently the second author extended the Paris-Vencovská axiomatic approach to inference processes in the context of several agents whose subjective probabilistic knowledge bases, while individually consistent, may be collectively inconsistent. In particular he defined a natural multi-agent extension of the inference process $\operatorname{\mathbf{ME}}$ called the social entropy process, $\operatorname{\mathbf{SEP}}$. However, while $\operatorname{\mathbf{SEP}}$ has been shown to possess many attractive properties, those which are known are almost certainly insufficient to uniquely characterise it. It is therefore of particular interest to study those Paris-Vencovská principles valid for $\operatorname{\mathbf{ME}}$ whose immediate generalisations to the multi-agent case are not satisfied by $\operatorname{\mathbf{SEP}}$. One of these principles is the Irrelevant Information Principle, a powerful and appealing principle which very few inference processes satisfy even in the single agent context. In this paper we will investigate whether $\operatorname{\mathbf{SEP}}$ can satisfy an interesting modified generalisation of this principle. (English)
Keyword: uncertain reasoning
Keyword: discrete probability function
Keyword: social inference process
Keyword: maximum entropy
Keyword: Kullback–Leibler
Keyword: irrelevant information principle
MSC: 03B42
MSC: 03B48
MSC: 60A99
MSC: 68T37
MSC: 94A17
idZBL: Zbl 1297.68221
idMR: MR3216989
DOI: 10.14736/kyb-2014-2-0175
.
Date available: 2014-06-06T14:37:48Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143788
.
Reference: [1] Adamčík, M., Wilmers, G. M.: Probabilistic merging operators..Logique et Analyse (2013), to appear.
Reference: [2] Carnap, R.: On the application of inductive logic..Philosophy and Phenomenological Research 8 (1947), 133-148. MR 0023216, 10.2307/2102920
Reference: [3] French, S.: Group consensus probability distributions: A critical survey..In: Bayesian Statistics (J. M. Bernardo, M. H. De Groot, D. V. Lindley, and A. F. M. Smith, eds.), Elsevier, North Holland 1985, pp. 183-201. Zbl 0671.62010, MR 0862490
Reference: [4] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities..Cambridge University Press, 1934. Zbl 0634.26008
Reference: [5] Hawes, P.: An Investigation of Properties of Some Inference Processes..Ph.D. Thesis, The University of Manchester, Manchester 2007.
Reference: [6] Jaynes, E. T.: Where do we stand on maximum entropy?.In: The Maximum Entropy Formalism (R. D. Levine and M. Tribus, eds.), M.I.T. Press, Cambridge 1979. MR 0521743
Reference: [7] Kern-Isberner, G., Rödder, W.: Belief revision and information fusion on optimum entropy..Internat. J. of Intelligent Systems 19 (2004), 837-857. Zbl 1101.68944, 10.1002/int.20027
Reference: [8] Kracík, J.: Cooperation Methods in Bayesian Decision Making with Multiple Participants..Ph.D. Thesis, Czech Technical University, Prague 2009.
Reference: [9] Matúš, F.: On Iterated Averages of $I$-projections..Universität Bielefeld, Germany 2007.
Reference: [10] Osherson, D., Vardi, M.: Aggregating disparate estimates of chance..Games and Economic Behavior 56 (2006), 1, 148-173. Zbl 1127.62129, MR 2235941, 10.1016/j.geb.2006.04.001
Reference: [11] Paris, J. B.: The Uncertain Reasoner's Companion..Cambridge University Press, Cambridge 1994. Zbl 0838.68104, MR 1314199
Reference: [12] Paris, J. B., Vencovská, A.: On the applicability of maximum entropy to inexact reasoning..Internat. J. of Approximate Reasoning 3 (1989), 1-34. Zbl 0665.68079, MR 0975613, 10.1016/0888-613X(89)90012-1
Reference: [13] Paris, J. B., Vencovská, A.: A note on the inevitability of maximum entropy..Internat. J. of Approximate Reasoning 4 (1990), 183-224. MR 1051032, 10.1016/0888-613X(90)90020-3
Reference: [14] Predd, J. B., Osherson, D. N., Kulkarni, S. R., Poor, H. V.: Aggregating probabilistic forecasts from incoherent and abstaining experts..Decision Analysis 5 (2008), 4, 177-189. 10.1287/deca.1080.0119
Reference: [15] Shore, J. E., Johnson, R. W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy..IEEE Trans. Inform. Theory 26 (1980), 1, 26-37. Zbl 0532.94004, MR 0560389, 10.1109/TIT.1980.1056144
Reference: [16] Vomlel, J.: Methods of Probabilistic Knowledge Integration..Ph.D. Thesis, Czech Technical University, Prague 1999.
Reference: [17] Wilmers, G. M.: The social entropy process: Axiomatising the aggregation of probabilistic beliefs..In: Probability, Uncertainty and Rationality (H. Hosni and F. Montagna, eds.), 10 CRM series, Scuola Normale Superiore, Pisa 2010, pp. 87-104. Zbl 1206.03025, MR 2731977
Reference: [18] Wilmers, G. M.: Generalising the Maximum Entropy Inference Process to the Aggregation of Probabilistic Beliefs..available from http://manchester.academia.edu/GeorgeWilmers/Papers
.

Files

Files Size Format View
Kybernetika_50-2014-2_2.pdf 345.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo