Previous |  Up |  Next

Article

Title: Standard and nonstandard representability of positive uncertainty orderings (English)
Author: Capotorti, Andrea
Author: Coletti, Giulianella
Author: Vantaggi, Barbara
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 2
Year: 2014
Pages: 189-215
Summary lang: English
.
Category: math
.
Summary: Axioms are given for positive comparative probabilities and plausibilities defined either on Boolean algebras or on arbitrary sets of events. These axioms allow to characterize binary relations representable by either standard or nonstandard measures (i. e. taking values either on the real field or on a hyperreal field). We also study relations between conditional events induced by preferences on conditional acts. (English)
Keyword: comparative probability
Keyword: comparative plausibilities
Keyword: hyperreal field
Keyword: representability by nonstandard measures
MSC: 06A06
MSC: 60A05
MSC: 60E15
MSC: 62C10
MSC: 91B08
idZBL: Zbl 1302.60010
idMR: MR3216990
DOI: 10.14736/kyb-2014-2-0189
.
Date available: 2014-06-06T14:41:51Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143789
.
Reference: [1] Yaghlane, B. Ben, Smets, P., Mellouli, K.: About conditional belief function independence..Lect. Notes in Comput. Sci. 2143 (2001), 340-349. MR 1909832, 10.1007/3-540-44652-4_30
Reference: [2] Bernardi, S., Coletti, G.: A Rational conditional utility model in a coherent framework..Lect. Notes in Comput. Sci. 2143 (2001), 108-119. Zbl 1001.68531, 10.1007/3-540-44652-4_11
Reference: [3] Blume, L., Brandenburger, A., Dekel, E.: Lexicographic probabilities and choice under uncertainty..Econometrica 59 (1991), 1, 61-79. Zbl 0732.90005, MR 1085584, 10.2307/2938240
Reference: [4] Capotorti, A., Coletti, G., Vantaggi, B.: Non-additive ordinal relations representable by lower or upper probabilities..Kybernetika 34 (1998), 10, 79-90. Zbl 1274.68518, MR 1619057
Reference: [5] Capotorti, A., Coletti, G., Vantaggi, B.: Preferences representable by a lower expectation: some characterizations..Theory and Decision 64 (2008), 119-146. Zbl 1136.91392, MR 2399934, 10.1007/s11238-007-9052-4
Reference: [6] Chateauneuf, A., Jaffray, J. Y.: Archimedean qualitative probabilities..J. Math. Psychol. 28 (1984), 191-204. Zbl 0558.60003, MR 0763783, 10.1016/0022-2496(84)90026-9
Reference: [7] Coletti, G.: Coherent qualitative probability..J. Math. Psychol. 34 (1990), 297-310. Zbl 0713.60003, MR 1068441, 10.1016/0022-2496(90)90034-7
Reference: [8] Coletti, G.: Coherent numerical and ordinal probabilistic assessments..IEEE Tras. Systems, Man, and Cybernetics 24 (1994), 12, 1747-1754. MR 1302033, 10.1109/21.328932
Reference: [9] Coletti, G., Mastroleo, M.: Conditional belief functions: a comparison among different definitions..In: Proc. 7th Workshop on Uncertainty Processing (WUPES), 2006.
Reference: [10] Coletti, G., Scozzafava, R.: Toward a general theory of conditional beliefs..Internat. J. of Intelligent Systems 21 (2006), 229-259. Zbl 1160.68582, 10.1002/int.20133
Reference: [11] Coletti, G., Scozzafava, R., Vantaggi, B.: Integrated likelihood in a finitely additive setting..Lect. Notes in Computer Science LNAI 5590 (2009), 554-565. Zbl 1245.62012, MR 2893315, 10.1007/978-3-642-02906-6_48
Reference: [12] Coletti, G., Vantaggi, B.: Representability of ordinal relations on a set of conditional events..Theory and Decision 60 (2006), 137-174. Zbl 1119.91029, MR 2226911, 10.1007/s11238-005-4570-4
Reference: [13] Coletti, G., Vantaggi, B.: A view on conditional measures through local representability of binary relations..Internat. J. Approximate Reasoning 60 (2006), 137-174. Zbl 1184.68500, MR 2226911
Reference: [14] Coletti, G., Vantaggi, B.: Conditional not-additive measures and fuzzy sets..In: Proc. ISIPTA 2013, pp. 67-76.
Reference: [15] Finetti, B. de: Sul significato soggettivo delle probabilità..Fundam. Mat. 17 (1931), 293-329.
Reference: [16] Finetti, B. de: La prevision: Ses lois logiques, ses sources subjectives..Ann. Inst. Henri Poincaré, Section B 7 (1937), l-68. Zbl 0017.07602
Reference: [17] Finetti, B. de: Teoria della Probabilità..Einaudi, Torino 1970 (Engl. transl.) Theory of Probability, Wiley and Sons, London 1974.
Reference: [18] Dempster, A. P.: Upper and lower probabilities induced by a multivalued mapping..Ann. Math. Statist. 38 (1967), 325-339. Zbl 0168.17501, MR 0207001, 10.1214/aoms/1177698950
Reference: [19] Dempster, A. P.: A generalization of Bayesian inference..The Royal Stat. Soc. B 50 (1968), 205-247. Zbl 0169.21301, MR 0238428
Reference: [20] Denoeux, T., Smets, P.: classification using belief functions: The relationship between the case-based and model-based approaches..IEEE Trans. on Systems, Man and Cybernetics B 36 (2006), 6, 1395-1406. 10.1109/TSMCB.2006.877795
Reference: [21] Dubins, L. E.: Finitely additive conditional probabilities, conglomerability and disintegration..Ann. Probab. 3 (1975), 89-99. MR 0358891, 10.1214/aop/1176996451
Reference: [22] Dubois, D., Fargier, H., Vantaggi, B.: An axiomatization of conditional possibilistic preference functionals..Lect. Notes LNAI 4724 (2007), 803-815. Zbl 1148.68511
Reference: [23] Fenchel, W.: Convex Cones Sets and Functions..Lectures at Princeton University, Princeton 1951. Zbl 0053.12203
Reference: [24] Fagin, R., Halpern, J. Y., Megido, N.: A logic for reasoning about probabilities..Information and Computation 87 (1990), 78-128. MR 1055950, 10.1016/0890-5401(90)90060-U
Reference: [25] Halpern, J .Y.: Lexicographic probability, conditional probability, and nonstandard probability..Games and Economic Behavior 68 (2010), 1, 155-179. Zbl 1208.60005, MR 2577384, 10.1016/j.geb.2009.03.013
Reference: [26] Ghirardato, P.: Revisiting savage in a conditional world..Economic Theory 20 (2002), 83-92. Zbl 1030.91017, MR 1920674, 10.1007/s001990100188
Reference: [27] Holzer, S.: On coherence and conditional prevision..Bollettino UMI, Serie VI-C IV (1985), 1, 441-460. Zbl 0584.60001, MR 0805231
Reference: [28] Jaffray, J. Y.: Bayesian updating and belief functions..IEEE Trans. on Systems, Man, and Cybernetics 22 (1992), 1144-1152. Zbl 0769.62001, MR 1202571, 10.1109/21.179852
Reference: [29] Koopman, B. O.: The axioms and algebra of intuitive probability..Ann. Math. 41 (1940), 269-292. Zbl 0024.05001, MR 0001474, 10.2307/1969003
Reference: [30] Kraft, C., Pratt, J., Seidenberg, A.: Intuitive probability on finite sets..Ann. Math. Statist. 30 (1959), 408-419. Zbl 0173.19606, MR 0102850, 10.1214/aoms/1177706260
Reference: [31] Krauss, P. H.: Representation of conditional probability measures on Boolean algebras..Acta Mathematica Academiae Sceintiarum Hungaricae 19 (1068), 3-4, 229-241. Zbl 0174.49001, MR 0236080
Reference: [32] Lehmann, D.: Generalized qualitative probability: Savage revisited..In: Proc. UAI'96, pp. 381-388. MR 1617222
Reference: [33] Narens, L.: Minimal conditions for additive conjoint measurement and qualitative probability..J. Math. Psychol. 11 (1974), 404-430. Zbl 0307.02038, MR 0363541, 10.1016/0022-2496(74)90030-3
Reference: [34] Paris, J.: A note on the Dutch Book method..In: Proc. Second International Symposium on Imprecise Probabilities and their Applications (G. De Cooman, T. Fine, and T. Seidenfeld, eds.), ISIPTA 2001, Shaker Publishing Company, Ithaca, pp. 301-306.
Reference: [35] Rényi, A.: On conditional probability spaces generated by a dimensionally ordered set of measures..Theor. Probab. Appl. 1 (1956), 61-71. Zbl 0073.12302, MR 0085639, 10.1137/1101005
Reference: [36] Regazzini, E.: Finitely additive conditional probabilities..Rendiconti Sem. Mat. Fis. Milano 55 (1985), 69-89. Zbl 0683.60005, MR 0933711, 10.1007/BF02924866
Reference: [37] Regoli, G.: Rational comparisons and numerical representation..In: Decision Theory and Decision Analysis: Trends and Challenges, Academic Press, New York 1994.
Reference: [38] Robinson, A.: Non-Standard Analysis..North Holland, Amsterdam 1966. Zbl 0843.26012, MR 0205854
Reference: [39] Savage, L. J.: The Foundations of Statistics..Wiley, New York 1954. Zbl 0276.62006, MR 0063582
Reference: [40] Shafer, G.: Allocations of probability..Ann. Probab. 7 (1979), 827-839. Zbl 0414.60002, MR 0542132, 10.1214/aop/1176994941
Reference: [41] Vantaggi, B.: Incomplete preferences on conditional random quantities: representability by conditional previsions..Math. Soc. Sci. 60 (2010), 104-112. Zbl 1232.91160, MR 2663973, 10.1016/j.mathsocsci.2010.06.002
Reference: [42] Walley, P.: Belief function representations of statistical evidence..Ann. Statist. 4 (1987), 1439-1465. Zbl 0645.62003, MR 0913567, 10.1214/aos/1176350603
Reference: [43] Walley, P.: Statistical Reasoning with Imprecise Probabilities..Chapman and Hall, London 1991. Zbl 0732.62004, MR 1145491
Reference: [44] Williams, P. M.: Notes on Conditional Previsions..Working Paper School of Mathematical and Physical Sciences, The University of Sussex, 1975. Zbl 1114.60005, MR 2295423
Reference: [45] Wong, S. K. M., Tao, Y. Y., Bollmann, P., Burger, H. C.: Axiomatization of qualitative belief structure..IEEE Trans. Systems, Man, and Cybernet. 21 (1991), 726-734. MR 1143669, 10.1109/21.108290
.

Files

Files Size Format View
Kybernetika_50-2014-2_3.pdf 418.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo