Previous |  Up |  Next

Article

Title: Free associative algebras, noncommutative Gröbner bases, and universal associative envelopes for nonassociative structures (English)
Author: Bremner, Murray R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 3
Year: 2014
Pages: 341-379
Summary lang: English
.
Category: math
.
Summary: First, we provide an introduction to the theory and algorithms for noncommutative Gröbner bases for ideals in free associative algebras. Second, we explain how to construct universal associative envelopes for nonassociative structures defined by multilinear operations. Third, we extend the work of Elgendy (2012) for nonassociative structures on the 2-dimensional simple associative triple system to the 4- and 6-dimensional systems. (English)
Keyword: free associative algebras
Keyword: Gröbner bases
Keyword: composition (diamond) lemma
Keyword: universal associative envelopes
Keyword: Lie algebras and triple systems
Keyword: PBW theorem
Keyword: Jordan algebras and triple systems
Keyword: trilinear operations
Keyword: computer algebra
MSC: 16S10
MSC: 16S30
MSC: 16W10
MSC: 16Z05
MSC: 17A30
MSC: 17A40
MSC: 17A42
MSC: 17B35
MSC: 17B60
MSC: 17C05
MSC: 17C50
MSC: 68W30
idZBL: Zbl 06391547
idMR: MR3225614
.
Date available: 2015-01-19T10:53:40Z
Last updated: 2016-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143812
.
Reference: [1] Abramson M.P.: Historical background to Gröbner's paper.ACM Commun. Comput. Algebra 43 (2009), no. 1-2, 22–23. MR 2571829
Reference: [2] Adams W.W., Loustaunau P.: An Introduction to Gröbner Bases.American Mathematical Society, Providence, RI, 1994. Zbl 0803.13015, MR 1287608
Reference: [3] Aguiar M., Loday J.-L.: Quadri-algebras.J. Pure Appl. Algebra 191 (2004), no. 3, 205–221. Zbl 1097.17002, MR 2059613, 10.1016/j.jpaa.2004.01.002
Reference: [4] Aymon M., Grivel P.-P.: Un théorème de Poincaré-Birkhoff-Witt pour les algèbres de Leibniz.Comm. Algebra 31 (2003), no. 2, 527–544. Zbl 1020.17002, MR 1968912, 10.1081/AGB-120017324
Reference: [5] Baader F., Nipkow T.: Term Rewriting and All That.Cambridge University Press, Cambridge, 1998. Zbl 0948.68098, MR 1629216
Reference: [6] Bai C., Liu L., Ni X.: Some results on L-dendriform algebras.J. Geom. Phys. 60 (2010), no. 6-8, 940–950. MR 2647294
Reference: [7] Bashir S.: Automorphisms of simple anti-Jordan pairs.Ph.D. thesis, University of Ottawa, Canada, 2008. MR 2712919
Reference: [8] Becker T., Weispfenning V.: Gröbner Bases: A Computational Approach to Commutative Algebra.Springer, New York, 1993. Zbl 0772.13010, MR 1213453
Reference: [9] Benkart G., Roby T.: Down-up algebras.J. Algebra 209 (1998), no. 1, 305–344; Addendum: “Down-up algebras”, J. Algebra 213 (1999), no. 1, 378. Zbl 0922.17006, MR 1652138, 10.1006/jabr.1998.7511
Reference: [10] Bergman G.M.: The diamond lemma for ring theory.Adv. in Math. 29 (1978), no. 2, 178–218. Zbl 0326.16019, MR 0506890, 10.1016/0001-8708(78)90010-5
Reference: [11] Birkhoff G.: On the structure of abstract algebras.Proc. Cambridge Philos. Soc. 31 (1935), no. 4, 433–454. Zbl 0013.00105
Reference: [12] Birkhoff G., Whitman P.M.: Representation of Jordan and Lie algebras.Trans. Amer. Math. Soc. 65 (1949), 116–136. Zbl 0032.25102, MR 0029366, 10.1090/S0002-9947-1949-0029366-6
Reference: [13] Bokut L.A.: Imbeddings into simple associative algebras.Algebra i Logika 15 (1976), no. 2, 117–142. MR 0506423, 10.1007/BF01877233
Reference: [14] Bokut L.A.: The method of Gröbner-Shirshov bases.Siberian Adv. Math. 9 (1999), no. 3, 1–16. Zbl 0937.17004, MR 1796985
Reference: [15] Bokut L.A., Chen Y.: Gröbner-Shirshov bases for Lie algebras: after A.I. Shirshov.Southeast Asian Bull. Math. 31 (2007), no. 6, 1057–1076. Zbl 1150.17008, MR 2386984
Reference: [16] Bokut L.A., Chen Y., Deng X.: Gröbner-Shirshov bases for Rota-Baxter algebras.Sibirsk. Mat. Zh. 51 (2010), no. 6, 1237–1250. Zbl 1235.16021, MR 2797594
Reference: [17] Bokut L.A., Chen Y., Huang J.: Gröbner-Shirshov bases for $L$-algebras.Internat. J. Algebra Comput. 23 (2013), no. 3, 547–571. Zbl 1282.17004, MR 3048111, 10.1142/S0218196713500094
Reference: [18] Bokut L.A., Chen Y., Li Y.: Gröbner-Shirshov bases for Vinberg-Koszul-Gerstenhaber right-symmetric algebras.Fundam. Prikl. Mat. 14 (2008), no. 8, 55–67. MR 2744933
Reference: [19] Bokut L.A., Chen Y., Liu C.: Gröbner-Shirshov bases for dialgebras.Internat. J. Algebra Comput. 20 (2010), no. 3, 391–415. Zbl 1245.17001, MR 2658418, 10.1142/S0218196710005753
Reference: [20] Bokut L.A., Chen Y., Qiu J.: Gröbner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras.J. Pure Appl. Algebra 214 (2010), no. 1, 89–100. Zbl 1213.16014, MR 2561769, 10.1016/j.jpaa.2009.05.005
Reference: [21] Bokut L.A., Chibrikov E.S.: Lyndon-Shirshov words, Gröbner-Shirshov bases, and free Lie algebras.Non-associative Algebra and Its Applications, pp. 17–39, Chapman & Hall/CRC, Boca Raton, 2006. MR 2203694
Reference: [22] Bokut L.A., Kolesnikov P.S.: Gröbner-Shirshov bases: from their incipiency to the present.J. Math. Sci. (N.Y.) 116 (2003), no. 1, 2894–2916. MR 1811792, 10.1023/A:1023490323855
Reference: [23] Bokut L.A., Kukin G.P.: Algorithmic and Combinatorial Algebra.Kluwer Academic Publishers Group, Dordrecht, 1994. Zbl 0826.17002, MR 1292459
Reference: [24] Bokut L.A., Shum K.P.: Gröbner and Gröbner-Shirshov bases in algebra: an elementary approach.Southeast Asian Bull. Math. 29 (2005), no. 2, 227–252. Zbl 1133.16037, MR 2217531
Reference: [25] Borges-Trenard M.A., Borges-Quintana M., Mora T.: Computing Gröbner bases by FGLM techniques in a non-commutative setting.J. Symbolic Comput. 30 (2000), no. 4, 429–449. Zbl 0996.16033, MR 1784751, 10.1006/jsco.1999.0415
Reference: [26] Bremner M.R.: How to compute the Wedderburn decomposition of a finite-dimensional associative algebra.Groups Complex. Cryptol. 3 (2011), no. 1, 47–66. Zbl 1250.16018, MR 2806081, 10.1515/gcc.2011.003
Reference: [27] Bremner M.R.: Algebras, dialgebras, and polynomial identities.Serdica Math. J. 38 (2012), 91–136. MR 3014494
Reference: [28] Bremner M.R., Hentzel I.R.: Identities for generalized Lie and Jordan products on totally associative triple systems.J. Algebra 231 (2000), no. 1, 387–405. Zbl 0999.17044, MR 1779606, 10.1006/jabr.2000.8372
Reference: [29] Bremner M.R., S. Madariaga S.: Polynomial identities for tangent algebras of monoassociative loops.Comm. Algebra 42 (2014), no. 1, 203–227. MR 3169565, 10.1080/00927872.2012.709567
Reference: [30] Bremner M.R., Peresi L.A.: Classification of trilinear operations.Comm. Algebra 35 (2007), no. 9, 2932–2959. Zbl 1172.17003, MR 2356309, 10.1080/00927870701353126
Reference: [31] Bremner M.R., Peresi L.A.: An application of lattice basis reduction to polynomial identities for algebraic structures.Linear Algebra Appl. 430 (2009), no. 2-3, 642–659. Zbl 1173.17001, MR 2469318
Reference: [32] Bremner M.R., Peresi L.A.: Polynomial identities for the ternary cyclic sum.Linear Multilinear Algebra 57 (2009), no. 6, 595–608. Zbl 1188.17003, MR 2543721, 10.1080/03081080802267748
Reference: [33] Buchberger B.: An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal.translated from the 1965 German original by Michael P. Abramson, J. Symbolic Comput. 41 (2006), no. 3-4, 475–511. Zbl 1158.01307, MR 2202562
Reference: [34] Buchberger B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems.Aequationes Math. 4 (1970), 374–383. Zbl 0212.06401, MR 0268178, 10.1007/BF01844169
Reference: [35] Buchberger B.: History and basic features of the critical-pair/completion procedure.Rewriting Techniques and Applications (Dijon, 1985), J. Symbolic Comput. 3 (1987), nos. 1–2, 3–38. Zbl 0645.68094, MR 0893184
Reference: [36] Buchberger B.: Comments on the translation of my Ph.D. thesis: “An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal”.J. Symbolic Comput. 41 (2006), no. 3-4, 471–474. MR 2202561
Reference: [37] Bueso J., Gómez-Torrecillas J., Verschoren A.: Algorithmic Methods in Noncommutative Algebra: Applications to Quantum Groups.Kluwer Academic Publishers, Dordrecht, 2003. MR 2006329
Reference: [38] Carlsson R.: $n$-ary algebras.Nagoya Math. J. 78 (1980), 45–56. Zbl 0466.16017, MR 0571436
Reference: [39] Casas J.M., Insua M.A., Ladra M.: Poincaré-Birkhoff-Witt theorem for Leibniz $n$-algebras.J. Symbolic Comput. 42 (2007), no. 11-12, 1052–1065. Zbl 1131.17001, MR 2368072, 10.1016/j.jsc.2007.05.003
Reference: [40] Chen Y., Mo Q.: Embedding dendriform algebra into its universal enveloping Rota-Baxter algebra.Proc. Amer. Math. Soc. 139 (2011), no. 12, 4207–4216. MR 2823066, 10.1090/S0002-9939-2011-10889-X
Reference: [41] Chen Y., Wang B.: Gröbner-Shirshov bases and Hilbert series of free dendriform algebras.Southeast Asian Bull. Math. 34 (2010), no. 4, 639–650. Zbl 1232.17002, MR 2768676
Reference: [42] Chibrikov E.S.: On free Sabinin algebras.Comm. Algebra 39 (2011), no. 11, 4014–4035. Zbl 1251.17016, MR 2855109, 10.1080/00927872.2010.515637
Reference: [43] Church A.: A set of postulates for the foundation of logic.Ann. of Math. (2) 33 (1932), no. 2, 346–366. Zbl 0008.28902, MR 1503059, 10.2307/1968337
Reference: [44] Church A., Rosser J.B.: Some properties of conversion.Trans. Amer. Math. Soc. 39 (1936), no. 3, 472–482. Zbl 0014.38504, MR 1501858, 10.1090/S0002-9947-1936-1501858-0
Reference: [45] Clifton J.M.: A simplification of the computation of the natural representation of the symmetric group $S_n$.Proc. Amer. Math. Soc. 83 (1981), no. 2, 248–250. Zbl 0443.20013, MR 0624907
Reference: [46] Cohen A.M., Gijsbers D.A.H.: Documentation on the GBNP Package.available at: tt{http://www.win.tue.nl/{ asciitilde}amc/pub/grobner/doc.html}.
Reference: [47] Cox D., Little J., O'Shea D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra.Springer, New York, 1992. Zbl 1118.13001, MR 1189133
Reference: [48] de Graaf W.A.: Lie Algebras: Theory and Algorithms.North-Holland Publishing Co., Amsterdam, 2000. Zbl 1122.17300, MR 1743970
Reference: [49] Dotsenko V., Khoroshkin A.: Gröbner bases for operads.Duke Math. J. 153 (2010), no. 2, 363–396. Zbl 1208.18007, MR 2667136, 10.1215/00127094-2010-026
Reference: [50] Dotsenko V., Khoroshkin A.: Quillen homology for operads via Gröbner bases.Doc. Math. 18 (2013), 707–747. Zbl 1278.18018, MR 3084563
Reference: [51] Dotsenko V., Vallette B.: Higher Koszul duality for associative algebras.Glasg. Math. J. 55 (2013), no. A, 55–74. Zbl 1284.18026, MR 3110804, 10.1017/S0017089513000505
Reference: [52] Eisenbud D., Peeva I., Sturmfels B.: Non-commutative Gröbner bases for commutative algebras.Proc. Amer. Math. Soc. 126 (1998), no. 3, 687–691. Zbl 0898.16015, MR 1443825, 10.1090/S0002-9939-98-04229-4
Reference: [53] Elgendy H.A.: Polynomial Identities and Enveloping Algebras for $n$-ary Structures.Ph.D. thesis, University of Saskatchewan, Canada, 2012. MR 3152544
Reference: [54] Elgendy H.A.: Universal associative envelopes of nonassociative triple systems.Comm. Algebra 42 (2014), no. 4, 1785–1810. MR 3169671, 10.1080/00927872.2012.749409
Reference: [55] Elgendy H.A., Bremner M.R.: Universal associative envelopes of $(n{+}1)$-dimensional $n$-Lie algebras.Comm. Algebra 40 (2012), no. 5, 1827–1842. Zbl 1260.17005, MR 2924485, 10.1080/00927872.2011.558549
Reference: [56] Ene V., Herzog J.: Gröbner Bases in Commutative Algebra.American Mathematical Society, Providence, RI, 2012. Zbl 1242.13001, MR 2850142
Reference: [57] Evans T.: The word problem for abstract algebras.J. London Math. Soc. 26 (1951), 64–71. Zbl 0042.03303, MR 0038958, 10.1112/jlms/s1-26.1.64
Reference: [58] Faulkner J.R.: Identity classification in triple systems.J. Algebra 94 (1985), no. 2, 352–363. Zbl 0596.17002, MR 0792960, 10.1016/0021-8693(85)90189-9
Reference: [59] Faulkner J.R., Ferrar J.C.: Simple anti-Jordan pairs.Comm. Algebra 8 (1980), no. 11, 993–1013. Zbl 0447.17003, MR 0577825, 10.1080/00927878008822505
Reference: [60] Fröberg R.: An Introduction to Gröbner Bases.John Wiley & Sons, Ltd., Chichester, 1997. Zbl 0997.13500, MR 1483316
Reference: [61] Gerritzen L.: On infinite Gröbner bases in free algebras.Indag. Math. (N.S.) 9 (1998), no. 4, 491–501. Zbl 0930.16016, MR 1691989, 10.1016/S0019-3577(98)80029-3
Reference: [62] Gerritzen L.: Hilbert series and non-associative Gröbner bases.Manuscripta Math. 103 (2000), no. 2, 161–167. Zbl 0961.17002, MR 1796312
Reference: [63] Gerritzen L.: Tree polynomials and non-associative Gröbner bases.J. Symbolic Comput. 41 (2006), no. 3-4, 297–316. Zbl 1158.17300, MR 2202553, 10.1016/j.jsc.2003.09.005
Reference: [64] Gerritzen L., Holtkamp R.: On Gröbner bases of noncommutative power series.Indag. Math. (N.S.) 9 (1998), no. 4, 503–519. Zbl 0930.16017, MR 1691990, 10.1016/S0019-3577(98)80030-X
Reference: [65] Glennie C.M.: Some identities valid in special Jordan algebras but not valid in all Jordan algebras.Pacific J. Math. 16 (1966), 47–59. Zbl 0134.26903, MR 0186708, 10.2140/pjm.1966.16.47
Reference: [66] Green E.L.: An introduction to noncommutative Gröbner bases.Computational Algebra, pp. 167–190, Dekker, New York, 1994. Zbl 0807.16002, MR 1245952
Reference: [67] Green E.L.: Noncommutative Gröbner bases, and projective resolutions.Computational Methods for Representations of Groups and Algebras, pp. 29–60, Birkhäuser, Basel, 1999. Zbl 0957.16033, MR 1714602
Reference: [68] Green E.L., Heath L.S., Keller B.J.: Opal: a system for computing noncommutative Gröbner bases.Rewriting Techniques and Applications, pp. 331–334, Lecture Notes in Computer Science, 1232, Springer, 1997. MR 1605520
Reference: [69] Green E.L., Mora T., Ufnarovski V.: The non-commutative Gröbner freaks.Symbolic Rewriting Techniques (Ascona, 1995), pp. 93–104, Birkhäuser, Basel, 1998. Zbl 1020.16017, MR 1624647
Reference: [70] Gröbner W.: Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten.Monatsh. Math. Phys. 47 (1939), no. 1, 247–284. Zbl 0021.22505, MR 1550816, 10.1007/BF01695500
Reference: [71] Gröbner W.: On the algebraic properties of integrals of linear differential equations with constant coefficients.translated from the German by Michael Abramson, ACM Commun. Comput. Algebra 43 (2009), no. 1-2, 24–46. MR 2571830
Reference: [72] Guo L., Sit W., Zhang R.: Differential type operators and Gröbner-Shirshov bases.J. Symbolic Comput. 52 (2013), 97–123. MR 3018130, 10.1016/j.jsc.2012.05.014
Reference: [73] Hestenes M.R.: A ternary algebra with applications to matrices and linear transformations.Arch. Rational Mech. Anal. 11 (1962), 138–194. Zbl 0201.37001, MR 0150166, 10.1007/BF00253936
Reference: [74] Hodge T.L., Parshall B.J.: On the representation theory of Lie triple systems.Trans. Amer. Math. Soc. 354 (2002), no. 11, 4359–4391. Zbl 1012.17001, MR 1926880, 10.1090/S0002-9947-02-03050-7
Reference: [75] Hou D., Bai C.: J-dendriform algebras.Front. Math. China 7 (2012), no. 1, 29–49. MR 2876897, 10.1007/s11464-011-0160-7
Reference: [76] Hou D., Ni X., Bai C.: Pre-Jordan algebras.Math. Scand. 112 (2013), no. 1, 19–48. MR 3057597
Reference: [77] Insua M.A., Ladra M.: Gröbner bases in universal enveloping algebras of Leibniz algebras.J. Symbolic Comput. 44 (2009), no. 5, 517–526. Zbl 1163.17004, MR 2499928, 10.1016/j.jsc.2007.07.020
Reference: [78] Jacobson N.: Structure and Representations of Jordan Algebras.American Mathematical Society, Providence, R.I., 1968. Zbl 0218.17010, MR 0251099
Reference: [79] Kang S.-J., Lee D.-I., Lee K.-H., Park H.: Linear algebraic approach to Gröbner-Shirshov basis theory.J. Algebra 313 (2007), no. 2, 988–1004. Zbl 1180.17005, MR 2329580, 10.1016/j.jalgebra.2007.02.001
Reference: [80] Keller B.J.: Algorithms and Orders for Finding Noncommutative Gröbner Bases.Ph.D. thesis, Virginia Polytechnic Institute and State University, 1997. MR 2696478
Reference: [81] Keller B.J.: Alternatives in implementing noncommutative Gröbner basis systems.Symbolic Rewriting Techniques, pp. 105–126, Birkhüser, Basel, 1998. Zbl 0927.16042, MR 1624651
Reference: [82] Kleene S.C.: Proof by cases in formal logic.Ann. of Math. (2) 35 (1934), no. 3, 529–544. Zbl 0010.14602, MR 1503178, 10.2307/1968749
Reference: [83] Knuth D.E., Bendix P.B.: Simple word problems in universal algebras.Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pp. 263–297, Pergamon, Oxford, 1970. Zbl 0188.04902, MR 0255472
Reference: [84] Li H.: Gröbner Bases in Ring Theory.World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. MR 2894019
Reference: [85] Lister W.G.: A structure theory of Lie triple systems.Trans. Amer. Math. Soc. 72 (1952), 217–242. Zbl 0046.03404, MR 0045702, 10.1090/S0002-9947-1952-0045702-9
Reference: [86] Lister W.G.: Ternary rings.Trans. Amer. Math. Soc. 154 (1971), 37–55. Zbl 0502.17002, MR 0272835, 10.1090/S0002-9947-1971-0272835-6
Reference: [87] Loday J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz.Enseign. Math. (2) 39 (1993), no. 3-4, 269–293. Zbl 0806.55009, MR 1252069
Reference: [88] Loday J.-L.: Algèbres ayant deux opérations associatives (digèbres).C.R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 2, 141–146. Zbl 0845.16036, MR 1345436
Reference: [89] Loday J.-L.: Dialgebras.Dialgebras and Related Operads, pp. 7–66, Lecture Notes in Math., 1763, Springer, Berlin, 2001. Zbl 0999.17002, MR 1860994
Reference: [90] Loday J.-L., Pirashvili T.: Universal enveloping algebras of Leibniz algebras and (co)homology.Math. Ann. 296 (1993), no. 1, 139–158. Zbl 0821.17022, MR 1213376, 10.1007/BF01445099
Reference: [91] Loday J.-L., Vallette B.: Algebraic Operads.Grundlehren der Mathematischen Wissenschaften, 346, Springer, Heidelberg, 2012. Zbl 1260.18001, MR 2954392
Reference: [92] Loos O.: Lectures on Jordan Triples.University of British Columbia, Canada, 1971. Zbl 0337.17006, MR 0325717
Reference: [93] Loos O.: Assoziative Tripelsysteme.Manuscripta Math. 7 (1972), 103–112. Zbl 0237.16007, MR 0304446, 10.1007/BF01679707
Reference: [94] Macaulay F.S.: The Algebraic Theory of Modular Systems.Cambridge University Press, 1916, available online: tt{http://archive.org/details/algebraictheoryo00macauoft}. Zbl 0802.13001, MR 1281612
Reference: [95] Madariaga S.: Gröbner-Shirshov bases for the non-symmetric operads of dendriform algebras and quadri-algebras.J. Symbolic Comput. 60 (2014), 1–14. MR 3131375, 10.1016/j.jsc.2013.10.016
Reference: [96] Marché C.: Normalized rewriting: a unified view of Knuth-Bendix completion and Gröbner bases computation.Symbolic Rewriting Techniques (Ascona, 1995), pp. 193–208, Progr. Comput. Sci. Appl. Logic, 15, Birkhäuser, Basel, 1998. Zbl 0915.68100, MR 1624584
Reference: [97] Markl M., Shnider S., Stasheff J.: Operads in Algebra, Topology and Physics.Mathematical Surveys and Monographs, 96, American Mathematical Society, Providence, RI, 2002. Zbl 1017.18001, MR 1898414
Reference: [98] McCrimmon K.: A Taste of Jordan Algebras.Springer, New York, 2004. Zbl 1044.17001, MR 2014924
Reference: [99] Meyberg K.: Lectures on Algebras and Triple Systems.The University of Virginia, Charlottesville, 1972, available online: tt{http://www.math.uci.edu/{ asciitilde}brusso/Meyberg(Reduced2).pdf}. MR 0340353
Reference: [100] Mikhalev A.A., Zolotykh A.A.: Standard Gröbner-Shirshov bases of free algebras over rings. I. Free associative algebras.Internat. J. Algebra Comput. 8 (1998), no. 6, 689–726. Zbl 0923.16024, MR 1682224, 10.1142/S021819679800034X
Reference: [101] Mora F.: Groebner bases for noncommutative polynomial rings.Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Science, 229, pp. 353–362, Springer, Berlin, 1986. MR 0864254, 10.1007/3-540-16776-5_740
Reference: [102] Mora T.: An introduction to commutative and noncommutative Gröbner bases.Theoret. Comput. Sci. 134 (1994), 131–173. Zbl 0824.68056, MR 1299371, 10.1016/0304-3975(94)90283-6
Reference: [103] Musson I.M.: Lie Superalgebras and Enveloping Algebras.American Mathematical Society, Providence, 2012. Zbl 1255.17001, MR 2906817
Reference: [104] Newman M.H.A.: On theories with a combinatorial definition of “equivalence”.Annals of Math. 43 (1942), no. 2, 223–243. Zbl 0060.12501, MR 0007372, 10.2307/1968867
Reference: [105] The OEIS Foundation: On-line Encyclopedia of Integer Sequences.tt{http://oeis.org/}.
Reference: [106] Pérez-Izquierdo J.-M.: An envelope for Bol algebras.J. Algebra 284 (2005), no. 2, 480–493. MR 2114566, 10.1016/j.jalgebra.2004.09.038
Reference: [107] Pérez-Izquierdo J.-M.: Algebras, hyperalgebras, nonassociative bialgebras and loops.Adv. Math. 208 (2007), no. 2, 834–876. MR 2304338, 10.1016/j.aim.2006.04.001
Reference: [108] Pérez-Izquierdo J.-M., Shestakov I.P.: An envelope for Malcev algebras.J. Algebra 272 (2004), no. 1, 379–393. MR 2029038, 10.1016/S0021-8693(03)00389-2
Reference: [109] Qiu J.: Gröbner-Shirshov bases for commutative algebras with multiple operators and free commutative Rota-Baxter algebras.tt{arXiv:1301.5018}.
Reference: [110] Rajaee S.: Non-associative Gröbner bases.J. Symbolic Comput. 41 (2006), no. 8, 887–904. Zbl 1236.17006, MR 2246715
Reference: [111] Rutherford D.E.: Substitutional Analysis.Edinburgh, at the University Press, 1948. Zbl 0174.31202, MR 0027272
Reference: [112] Shestakov I.P., Umirbaev U.U.: Free Akivis algebras, primitive elements, and hyperalgebras.J. Algebra 250 (2002), no. 2, 533–548. Zbl 0993.17002, MR 1899864, 10.1006/jabr.2001.9123
Reference: [113] Shirshov A.I.: Some algorithmic problems for $\epsilon$-algebras.Sibirsk. Mat. Zh. 3 (1962), 132–137. MR 0183744
Reference: [114] Shirshov A.I.: On a hypothesis in the theory of Lie algebras.Sibirsk. Mat. Zh. 3 (1962), 297–301. MR 0182684
Reference: [115] Shirshov A.I.: Selected Works of A.I. Shirshov.translated by M.R. Bremner and M.V. Kotchetov, edited by L.A. Bokut, V.N. Latyshev, I.P. Shestakov and E. Zelmanov, Birkhäuser, Basel, 2009. Zbl 1188.01028, MR 2547481
Reference: [116] Ufnarovski V.S.: Introduction to noncommutative Gröbner bases theory.Gröbner Bases and Applications, pp. 259–280, Cambridge Univ. Press, Cambridge, 1998. Zbl 0902.16002, MR 1708883, 10.1017/CBO9780511565847.015
Reference: [117] Vallette B.: Manin products, Koszul duality, Loday algebras and Deligne conjecture.J. Reine Angew. Math. 620 (2008), 105–164. Zbl 1159.18001, MR 2427978
Reference: [118] Young A.: The Collected Papers of Alfred Young (1873–1940)., University of Toronto Press, 1977. MR 0439548
Reference: [119] Zhukov A.I.: Reduced systems of defining relations in non-associative algebras.Mat. Sbornik N.S. 27 (69) (1950), 267–280. MR 0037831
Reference: [120] Zinbiel G.W.: Encyclopedia of types of algebras 2010.Operads and Universal Algebra, pp. 217–297, Nankai Ser. Pure Appl. Math. Theoret. Phys., 9, World Sci. Publ., Hackensack, NJ, 2012. MR 3013090
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-3_6.pdf 460.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo