Previous |  Up |  Next

Article

Title: Seeable matter; unseeable antimatter (English)
Author: Dixon, Geoffrey
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 3
Year: 2014
Pages: 381-386
Summary lang: English
.
Category: math
.
Summary: The universe we see gives every sign of being composed of matter. This is considered a major unsolved problem in theoretical physics. Using the mathematical modeling based on the algebra $\bold T:=\bold C\otimes \bold H \otimes \bold O$, an interpretation is developed that suggests that this seeable universe is not the whole universe; there is an unseeable part of the universe composed of antimatter galaxies and stuff, and an extra 6 dimensions of space (also unseeable) linking the matter side to the antimatter---at the very least. (English)
Keyword: division algebras
Keyword: space-time model
MSC: 15A90
MSC: 17A35
MSC: 22E70
MSC: 81P10
MSC: 81R05
MSC: 81V22
idZBL: Zbl 06391548
idMR: MR3225615
.
Date available: 2015-01-19T10:54:11Z
Last updated: 2016-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143813
.
Reference: [1] Dixon G.M.: Division Algebras: Octonions, Quaternions, Complex Numbers, and the Algebraic Design of Physics.Kluwer, Dordrecht, 1994. Zbl 0807.15024, MR 1307379
Reference: [2] Dixon G.M.: Division Algebras, Lattices, Physics, Windmill Tilting.CreateSpace, 2011.
Reference: [3] Baez J.: The octonions.Bull. Amer. Math. Soc. 39 (2002), 145–205. Zbl 1026.17001, MR 1886087, 10.1090/S0273-0979-01-00934-X
Reference: [4] Conway J.H., Smith D.A.: On Quaternions and Octonions.A K Peters, Natick, MA, 2003. Zbl 1098.17001, MR 1957212
Reference: [5] Günaydin M., Gürsey F.: Quark structure and octonions.J. Math. Phys. 14 (1973), 1651. MR 0329463, 10.1063/1.1666240
Reference: [6] Dixon G.M.: Division algebras: family replication.J. Math. Phys. 45 (2004), 3878. Zbl 1071.81050, MR 2095677, 10.1063/1.1786682
Reference: [7] Dixon G.M.: http://www.7stones.com..
Reference: [8] Jordan P., von Neumann J., Wigner E.: On an algebraic generalization of the quantum mechanical formalism.Ann. Math. 35 (1934), 29–64. Zbl 0008.42103, MR 1503141, 10.2307/1968117
Reference: [9] Furey C.: Unified theory of ideals.Phys. Rev. D 86 (2012). 10.1103/PhysRevD.86.025024
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-3_7.pdf 177.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo