Previous |  Up |  Next

Article

Title: Moufang semidirect products of loops with groups and inverse property extensions (English)
Author: Greer, Mark
Author: Raney, Lee
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 3
Year: 2014
Pages: 411-420
Summary lang: English
.
Category: math
.
Summary: We investigate loops which can be written as the semidirect product of a loop and a group, and we provide a necessary and sufficient condition for such a loop to be Moufang. We also examine a class of loop extensions which arise as a result of a finite cyclic group acting as a group of semiautomorphisms on an inverse property loop. In particular, we consider closure properties of certain extensions similar to those as in [S. Gagola III, Cyclic extensions of Moufang loops induced by semiautomorphisms, J. Algebra Appl. 13 (2014), no. 4, 1350128], but from an external point of view. (English)
Keyword: extensions
Keyword: semidirect products
Keyword: Moufang loops
Keyword: inverse property loops
MSC: 20N05
idZBL: Zbl 06391551
idMR: MR3225618
.
Date available: 2015-01-19T10:56:08Z
Last updated: 2016-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143816
.
Reference: [1] Bruck R.H.: Pseudo-automorphisms and Moufang loops.Proc. Amer. Math. Soc. 2 (1952), 66–72. Zbl 0046.01803, MR 0047635, 10.1090/S0002-9939-1952-0047635-6
Reference: [2] Bruck R.H.: A Survey of Binary Systems.Springer, Berlin, 1971. Zbl 0141.01401, MR 0093552
Reference: [3] Chein O.: Moufang loops of small order. I.Trans. Amer. Math. Soc. 188 (1974), 31–51. Zbl 0286.20088, MR 0330336, 10.1090/S0002-9947-1974-0330336-3
Reference: [4] Chein O.: Moufang loops of small order.Mem. Amer. Math. Soc. 13 (1978), no. 197. Zbl 0378.20053, MR 0466391
Reference: [5] Greer M.: Semiautomorphic inverse property loops.submitted.
Reference: [6] The GAP Group: Groups, Algorithms, and Programming.http://www.gap-system.org (2008).
Reference: [7] Gagola S. III: Cyclic extensions of Moufang loops induced by semiautomorphisms.J. Algebra Appl. 13 (2014), no. 4, 1350128. MR 3153863, 10.1142/S0219498813501284
Reference: [8] Kinyon M.K., Jones O.: Loops and semidirect products.Comm. Algebra 28 (2000), 4137–4164. Zbl 0974.20049, MR 1772003, 10.1080/00927870008827079
Reference: [9] Kinyon M.K., Kunen K., Phillips J.D.: A generalization of Moufang and Steiner loops.Algebra Universalis 48 (2002), 81–101. Zbl 1058.20057, MR 1930034, 10.1007/s00012-002-8205-0
Reference: [10] McCune W.W.: Prover9, Mace4.http://www.cs.unm.edu/ mccune/prover9/ (2009).
Reference: [11] Nagy G.P., Vojtěchovský P.: Loops: Computing with quasigroups and loops.http://www.math.du.edu/loops (2008).
Reference: [12] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-3_10.pdf 227.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo