Previous |  Up |  Next

Article

Title: A class of latin squares derived from finite abelian groups (English)
Author: Evans, Anthony B.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 3
Year: 2014
Pages: 401-409
Summary lang: English
.
Category: math
.
Summary: We consider two classes of latin squares that are prolongations of Cayley tables of finite abelian groups. We will show that all squares in the first of these classes are confirmed bachelor squares, squares that have no orthogonal mate and contain at least one cell though which no transversal passes, while none of the squares in the second class can be included in any set of three mutually orthogonal latin squares. (English)
Keyword: latin squares
Keyword: bachelor squares
Keyword: monogamous squares
Keyword: prolongation
MSC: 05B15
idZBL: Zbl 06391550
idMR: MR3225617
.
Date available: 2015-01-19T10:55:29Z
Last updated: 2016-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143815
.
Reference: [1] Belyavskaya G.B.: Generalized extension of quasigroups.(Russian), Mat. Issled. 5 (1970), 28–48. MR 0284533
Reference: [2] Belyavskaya G.B.: Contraction of quasigroups. I..(Russian), Bul. Akad. Stiince RSS Moldoven (1970), 6–12. MR 0279219
Reference: [3] Belyavskaya G.B.: Contraction of quasigroups. II..(Russian), Bul. Akad. Stiince RSS Moldoven (1970), 3–17. MR 0284531
Reference: [4] Danziger P., Wanless I.M., Webb B.S.: Monogamous latin squares.J. Combin. Theory Ser. A 118 (2011), 796–807. Zbl 1232.05033, MR 2745425, 10.1016/j.jcta.2010.11.011
Reference: [5] Deriyenko I.I., Dudek W.A.: On prolongation of quasigroups.Quasigroups and Related Systems 16 (2008), 187–198. MR 2494876
Reference: [6] Evans A.B.: Latin squares without orthogonal mates.Des. Codes Crypt. 40 (2006), 121–130. Zbl 1180.05022, MR 2226287, 10.1007/s10623-006-8153-3
Reference: [7] Paige L.J.: A note on finite abelian groups.Bull. Amer. Math. Soc. 53 (1947), 590–593. Zbl 0033.15101, MR 0020990, 10.1090/S0002-9904-1947-08842-X
Reference: [8] Wanless I.M.: Transversals in latin squares: a survey.Surveys in combinatorics 2011, pp. 403–437, London Math. Soc. Lecture Note Ser., 392, Cambridge Univ. Press, Cambridge, 2011. Zbl 1226.05067, MR 2866738
Reference: [9] Wanless I.M., Webb B.S.: The existence of latin squares without orthogonal mates.Des. Codes Cryptogr. 40 (2006), 131–135. Zbl 1180.05023, MR 2226288, 10.1007/s10623-006-8168-9
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-3_9.pdf 208.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo