Previous |  Up |  Next

Article

Title: Cauchy problem for the complex Ginzburg-Landau type Equation with $L^{p}$-initial data (English)
Author: Shimotsuma, Daisuke
Author: Yokota, Tomomi
Author: Yoshii, Kentarou
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 2
Year: 2014
Pages: 353-361
Summary lang: English
.
Category: math
.
Summary: This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation $$ \dfrac {\partial u}{\partial t} -(\lambda +{\rm i} \alpha )\Delta u +(\kappa +{\rm i} \beta )|u|^{q-1}u-\gamma u=0 $$ in $\mathbb {R}^{N}\times (0,\infty )$ with $L^{p}$-initial data $u_{0}$ in the subcritical case ($1\leq q< 1+2p/N$), where $u$ is a complex-valued unknown function, $\alpha $, $\beta $, $\gamma $, $\kappa \in \mathbb {R}$, $\lambda >0$, $p>1$, ${\rm i} =\sqrt {-1}$ and $N\in \mathbb {N}$. The proof is based on the $L^{p}$-$L^{q}$ estimates of the linear semigroup $\{\exp (t(\lambda +{\rm i} \alpha )\Delta )\}$ and usual fixed-point argument. (English)
Keyword: local existence
Keyword: complex Ginzburg-Landau equation
MSC: 35A01
MSC: 35Q55
MSC: 35Q56
idZBL: Zbl 06362264
idMR: MR3238845
DOI: 10.21136/MB.2014.143860
.
Date available: 2014-07-14T08:40:05Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143860
.
Reference: [1] Clément, P., Okazawa, N., Sobajima, M., Yokota, T.: A simple approach to the Cauchy problem for complex Ginzburg-Landau equations by compactness methods.J. Differ. Equations 253 (2012), 1250-1263. Zbl 1248.35203, MR 2925912, 10.1016/j.jde.2012.05.002
Reference: [2] Giga, M., Giga, Y., Saal, J.: Nonlinear Partial Differential Equations. Asymptotic Behavior of Solutions and Self-Similar Solutions.Progress in Nonlinear Differential Equations and Their Applications 79 Birkhäuser, Boston (2010). Zbl 1215.35001, MR 2656972
Reference: [3] Ginibre, J., Velo, G.: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation I. Compactness methods.Physica D 95 (1996), 191-228. Zbl 0889.35045, MR 1406282, 10.1016/0167-2789(96)00055-3
Reference: [4] Ginibre, J., Velo, G.: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation II. Contraction methods.Commun. Math. Phys. 187 (1997), 45-79. Zbl 0889.35046, MR 1463822, 10.1007/s002200050129
Reference: [5] Kobayashi, Y., Matsumoto, T., Tanaka, N.: Semigroups of locally Lipschitz operators associated with semilinear evolution equations.J. Math. Anal. Appl. 330 (2007), 1042-1067. Zbl 1123.34044, MR 2308426, 10.1016/j.jmaa.2006.08.028
Reference: [6] Levermore, C. D., Oliver, M.: The complex Ginzburg-Landau equation as a model problem.Dynamical Systems and Probabilistic Methods in Partial Differential Equations P. Deift et al. Lect. Appl. Math. 31 AMS, Providence 141-190 (1996). Zbl 0845.35003, MR 1363028
Reference: [7] Matsumoto, T., Tanaka, N.: Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type.Nonlinear Anal. 69 (2008), 4025-4054. Zbl 1169.47045, MR 2463352, 10.1016/j.na.2007.10.035
Reference: [8] Matsumoto, T., Tanaka, N.: Well-posedness for the complex Ginzburg-Landau equations.Current Advances in Nonlinear Analysis and Related Topics T. Aiki et al. GAKUTO Internat. Ser. Math. Sci. Appl. 32 Gakk$\bar o$tosho, Tokyo (2010), 429-442. Zbl 1208.35143, MR 2668292
Reference: [9] Okazawa, N.: Smoothing effect and strong $L^2$-wellposedness in the complex Ginzburg-Landau equation.Differential Equations. Inverse and Direct Problems A. Favini, A. Lorenzi Lecture Notes in Pure and Applied Mathematics 251 CRC Press, Boca Raton (2006), 265-288. Zbl 1110.35030, MR 2275982, 10.1201/9781420011135.ch14
Reference: [10] Okazawa, N., Yokota, T.: Monotonicity method applied to the complex Ginzburg-Landau and related equations.J. Math. Anal. Appl. 267 (2002), 247-263. Zbl 0995.35029, MR 1886827, 10.1006/jmaa.2001.7770
Reference: [11] Okazawa, N., Yokota, T.: Perturbation theory for $m$-accretive operators and generalized complex Ginzburg-Landau equations.J. Math. Soc. Japan 54 (2002), 1-19. Zbl 1045.35080, MR 1864925, 10.2969/jmsj/1191593952
Reference: [12] Okazawa, N., Yokota, T.: Non-contraction semigroups generated by the complex Ginz-burg-Landau equation.Nonlinear Partial Differential Equations and Their Applications N. Kenmochi et al. GAKUTO Internat. Ser. Math. Sci. Appl. 20 Gakk$\bar o$tosho, Tokyo (2004), 490-504. MR 2087493
Reference: [13] Okazawa, N., Yokota, T.: Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation.Discrete Contin. Dyn. Syst. 28 (2010), 311-341. Zbl 1198.47089, MR 2629484, 10.3934/dcds.2010.28.311
Reference: [14] Yang, Y.: On the Ginzburg-Landau wave equation.Bull. Lond. Math. Soc. 22 (1990), 167-170. Zbl 0663.35095, MR 1045289, 10.1112/blms/22.2.167
Reference: [15] Yokota, T., Okazawa, N.: Smoothing effect for the complex Ginzburg-Landau equation (general case).Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 305-316. MR 2268800
.

Files

Files Size Format View
MathBohem_139-2014-2_19.pdf 258.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo