Previous |  Up |  Next

Article

Title: Two-sided bounds of eigenvalues of second- and fourth-order elliptic operators (English)
Author: Andreev, Andrey
Author: Racheva, Milena
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 59
Issue: 4
Year: 2014
Pages: 371-390
Summary lang: English
.
Category: math
.
Summary: This article presents an idea in the finite element methods (FEMs) for obtaining two-sided bounds of exact eigenvalues. This approach is based on the combination of nonconforming methods giving lower bounds of the eigenvalues and a postprocessing technique using conforming finite elements. Our results hold for the second and fourth-order problems defined on two-dimensional domains. First, we list analytic and experimental results concerning triangular and rectangular nonconforming elements which give at least asymptotically lower bounds of the exact eigenvalues. We present some new numerical experiments for the plate bending problem on a rectangular domain. The main result is that if we know an estimate from below by nonconforming FEM, then by using a postprocessing procedure we can obtain two-sided bounds of the first (essential) eigenvalue. For the other eigenvalues $\lambda _l$, $l = 2,3,\ldots $, we prove and give conditions when this method is applicable. Finally, the numerical results presented and discussed in the paper illustrate the efficiency of our method. (English)
Keyword: eigenvalue problem
Keyword: nonconforming finite element method
Keyword: conforming finite element method
Keyword: postprocessing
Keyword: lower bound
MSC: 35J25
MSC: 35J40
MSC: 35P15
MSC: 65N25
MSC: 65N30
idZBL: Zbl 06362234
idMR: MR3233550
DOI: 10.1007/s10492-014-0062-6
.
Date available: 2014-07-14T08:57:57Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143870
.
Reference: [1] Adini, A., Clough, R.: Analysis of Plate Bending by the Finite Element Method.NSF Report G. 7337 (1961).
Reference: [2] Andreev, A. B., Lazarov, R. D., Racheva, M. R.: Postprocessing and higher order convergence of mixed finite element approximations of biharmonic eigenvalue problems.J. Comput. Appl. Math. 182 (2005), 333-349. MR 2147872, 10.1016/j.cam.2004.12.015
Reference: [3] Andreev, A. B., Racheva, M. R.: Superconvergent FE postprocessing for eigenfunctions.C. R. Acad. Bulg. Sci. 55 (2002), 17-22. Zbl 1007.65087, MR 1885694
Reference: [4] Andreev, A. B., Racheva, M. R.: Lower bounds for eigenvalues by nonconforming FEM on convex domain.Application of Mathematics in Technical and Natural Sciences Proceedings of the 2nd international conference, Sozopol, Bulgaria, 2010. AIP Conf. Proc. 1301 Amer. Inst. Phys., Melville (2010), 361-369 M. Todorov et al. (2010), 361-369. Zbl 1232.35105, MR 2810107
Reference: [5] Andreev, A. B., Racheva, M. R.: Properties and estimates of an integral type nonconforming finite element.Large-Scale Scientific Computing 8th international conference, LSSC 2011, Sozopol, Bulgaria, 2011. Lecture Notes in Computer Science 7116, 2012, pp. 252-532 Springer, Berlin I. Lirkov et al. MR 2955161
Reference: [6] Andreev, A. B., Racheva, M. R.: Lower bounds for eigenvalues and postprocessing by an integral type nonconforming FEM.Sib. Zh. Vychisl. Mat. 15 235-249 (2012), Russian Numer. Analysis Appl. 5 (2012), 191-203. Zbl 1299.35217
Reference: [7] Andreev, A. B., Racheva, M. R., Tsanev, G. S.: A Nonconforming Finite Element with Integral Type Bubble Function.Proceedings of 5th Annual Meeting of the BG. Section of SIAM'10 (2010), 3-6.
Reference: [8] Armentano, M. G., Durán, R. G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods.ETNA, Electron. Trans. Numer. Anal. (electronic only) 17 (2004), 93-101. Zbl 1065.65127, MR 2040799
Reference: [9] Babuška, I., Kellogg, R. B., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements.Numer. Math. 33 (1979), 447-471. Zbl 0423.65057, MR 0553353, 10.1007/BF01399326
Reference: [10] Babuška, I., Osborn, J.: Eigenvalue problems.Handbook of Numerical Analysis, Vol. II: Finite Element Methods (Part 1) J.-L. Lions, P. G. Ciarlet North-Holland, Amsterdam (1991), 641-787. MR 1115240
Reference: [11] Brenner, S. C., Scott, R. L.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15 Springer, New York (1994). Zbl 0804.65101, MR 1278258, 10.1007/978-1-4757-4338-8_7
Reference: [12] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications. Vol. 4 North-Holland, Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [13] Ciarlet, P. G.: Basic error estimates for elliptic problems.Handbook of Numerical Analysis. Vol. II: Finite Element Methods (Part 1) P. G. Ciarlet et al. North-Holland, Amsterdam (1991). Zbl 0875.65086, MR 1115237
Reference: [14] Crouzeix, M., Raviart, P. A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I.Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33-75. MR 0343661
Reference: [15] Forsythe, G. E.: Asymptotic lower bounds for the fundamental frequency of convex membranes.Pac. J. Math. 5 (1955), 691-702. Zbl 0068.10304, MR 0073048, 10.2140/pjm.1955.5.691
Reference: [16] Grisvard, P.: Singularities in Boundary Problems.MASSON and Springer, Berlin (1985).
Reference: [17] Huang, H. T., Li, Z. C., Lin, Q.: New expansions of numerical eigenvalues by finite elements.J. Comput. Appl. Math. 217 (2008), 9-27. Zbl 1147.65090, MR 2427427, 10.1016/j.cam.2007.06.011
Reference: [18] Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem.Rev. Franc. Automat. Inform. Rech. Operat. {\it 9}, Analyse numer. R-1 9-53 (1975). Zbl 0319.73042, MR 0423968
Reference: [19] Lin, Q., Lin, J. F.: Finite Element Methods: Accuracy and Improvement.Science Press, Beijing (2006).
Reference: [20] Lin, Q., Huang, H. T., Li, Z. C.: New expansions of numerical eigenvalues for $-\Delta u=\lambda\rho u$ by nonconforming elements.Math. Comput. 77 (2008), 2061-2084. Zbl 1198.65228, MR 2429874, 10.1090/S0025-5718-08-02098-X
Reference: [21] Lin, Q., Tobiska, L., Zhou, A.: Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation.IMA J. Numer. Anal. 25 (2005), 160-181. Zbl 1068.65122, MR 2110239, 10.1093/imanum/drh008
Reference: [22] Lin, Q., Xie, H.: The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods.Math. Pract. Theory 42 (2012), 219-226 Chinese. Zbl 1289.65251, MR 3013284
Reference: [23] Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y.: Stokes eigenvalue approximations from below with nonconforming mixed finite element methods.Math. Pract. Theory 40 (2010), 157-168. MR 2768711
Reference: [24] Lin, Q., Xie, H., Xu, J.: Lower bounds of the discretization for piecewise polynomials.http://arxiv.org/abs/1106.4395 (2011). MR 3120579
Reference: [25] Liu, H. P., Yan, N. N.: Four finite element solutions and comparison of problem for the Poisson equation eigenvalue.Chin. J. Numer. Math. Appl. 27 27-39 (2005), 81-91. Zbl 1106.65327, MR 2159418
Reference: [26] Luo, F., Lin, Q., Xie, H.: Computing the lower and upper bounds of Laplace eigenvalue problem by combining conforming and nonconforming finite element methods.Sci. China, Math. 55 (2012), 1069-1082. Zbl 1261.65112, MR 2912496, 10.1007/s11425-012-4382-2
Reference: [27] Morley, L. S. D.: The triangular equilibrium element in the solution of plate bending problems.Aero. Quart. 19 (1968), 149-169. 10.1017/S0001925900004546
Reference: [28] Nicaise, S.: A posteriori error estimations of some cell-centered finite volume methods.SIAM J. Numer. Anal. (electronic) 43 (2005), 1481-1503. Zbl 1103.65110, MR 2182137, 10.1137/S0036142903437787
Reference: [29] Racheva, M. R., Andreev, A. B.: Superconvergence postprocessing for eigenvalues.Comput. Methods Appl. Math. 2 (2002), 171-185. Zbl 1012.65113, MR 1930846, 10.2478/cmam-2002-0011
Reference: [30] Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory.Numer. Math. 33 (1979), 23-42. Zbl 0394.65035, MR 0545740, 10.1007/BF01396493
Reference: [31] Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element.Numer. Methods Partial Differ. Equations 8 (1992), 97-111. Zbl 0742.76051, MR 1148797, 10.1002/num.1690080202
Reference: [32] Shi, Z.-C.: On the error estimates of Morley element.Math. Numer. Sin. Chinese 12 (1990), 113-118 translation in Chinese J. Numer. Math. Appl. 12 (1990), 102-108. Zbl 0850.73337, MR 1070298
Reference: [33] Strang, G., Fix, G. J.: An Analysis of the Finite Element Method.Prentice-Hall Series in Automatic Computation Prentice-Hall, Englewood Cliffs (1973). Zbl 0356.65096, MR 0443377
Reference: [34] Wang, M., Shi, Z.-C., Xu, J.: Some $n$-rectangle nonconforming elements for fourth order elliptic equations.J. Comput. Math. 25 (2007), 408-420. Zbl 1142.65451, MR 2337403
Reference: [35] Wang, L., Wu, Y., Xie, X.: Uniformly stable rectangular elements for fourth order elliptic singular perturbation problems.Numer. Methods Partial Differ. Equations 29 (2013), 721-737. MR 3039784, 10.1002/num.21723
Reference: [36] Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems.Math. Comput. 70 (2001), 17-25. Zbl 0959.65119, MR 1677419, 10.1090/S0025-5718-99-01180-1
Reference: [37] Yang, Y. D.: A posteriori error estimates in Adini finite element for eigenvalue problems.J. Comput. Math. 18 (2000), 413-418. Zbl 0957.65092, MR 1773912
Reference: [38] Yang, Y. D., Zhang, Z. M., Lin, F. B.: Eigenvalue approximation from below using non-conforming finite elements.Sci. China, Math. 53 (2010), 137-150. Zbl 1187.65125, MR 2594754, 10.1007/s11425-009-0198-0
Reference: [39] Zhang, H. Q., Wang, M.: The Mathematical Theory of Finite Elements.Science Press, Beijing (1991).
.

Files

Files Size Format View
AplMat_59-2014-4_2.pdf 325.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo