Previous |  Up |  Next

Article

Title: About stability of risk-seeking optimal stopping (English)
Author: Montes-de-Oca, Raúl
Author: Zaitseva, Elena
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 3
Year: 2014
Pages: 378-392
Summary lang: English
.
Category: math
.
Summary: We offer the quantitative estimation of stability of risk-sensitive cost optimization in the problem of optimal stopping of Markov chain on a Borel space $X$. It is supposed that the transition probability $p(\cdot |x)$, $x\in X$ is approximated by the transition probability $\widetilde{p}(\cdot |x)$, $x\in X$, and that the stopping rule $\widetilde{f}_*$ , which is optimal for the process with the transition probability $\widetilde{p}$ is applied to the process with the transition probability $p$. We give an upper bound (expressed in term of the total variation distance: $\sup_{x\in X}\|p(\cdot |x)-\widetilde{p}(\cdot |x)\|)$ for an additional cost paid for using the rule $\widetilde{f}_*$ instead of the (unknown) stopping rule $f_*$ optimal for $p$. (English)
Keyword: discrete-time Markov process
Keyword: risk-seeking expected total cost
Keyword: optimal stopping rule
Keyword: stability index
Keyword: total variation metric
MSC: 60G40
MSC: 62L15
MSC: 90C40
idZBL: Zbl 1300.60059
idMR: MR3245536
DOI: 10.14736/kyb-2014-3-0378
.
Date available: 2014-07-29T13:10:56Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143881
.
Reference: [1] Avila-Godoy, G., Fernández-Gaucherand, E.: Controlled Markov chains with exponential risk-sensitive criteria: modularity, structured policies and applications..In: Decision and Control 1998. Proc. 37th IEEE Conference. Vol. 1, IEEE, pp. 778-783.
Reference: [2] Bäuerle, N., Rieder, U.: Markov Decision Processes with Applications to Finance..Springer-Verlag, Berlin 2011. Zbl 1236.90004, MR 2808878
Reference: [3] Borkar, V. S., Meyn, S. P.: Risk-sensitive optimal control for Markov decision processes with monotone cost..Math. Oper. Res. 27 (2002), 192-209. Zbl 1082.90577, MR 1886226, 10.1287/moor.27.1.192.334
Reference: [4] Cavazos-Cadena, R.: Optimality equations and inequalities in a class of risk-sensitive average cost Markov decision chains..Math. Methods Oper. Res. 71 (2010), 47-84. Zbl 1189.93144, MR 2595908, 10.1007/s00186-009-0285-6
Reference: [5] Cavazos-Cadena, R., Fernández-Gaucherand, E.: Controlled Markov chains with risk-sensitive criteria: Average costs, optimality equations, and optimal solutions..Math. Methods Oper. Res. 49 (1999), 299-324. MR 1687362
Reference: [6] Cavazos-Cadena, R., Montes-de-Oca, R.: Optimal stationary policies in risk-sensitive dynamic programs with finite state space and nonegative rewards..Appl. Math. 27 (2000), 167-185. MR 1768711
Reference: [7] Dijk, N. M. Van, Sladký, K.: Error bounds for nonnegative dynamic models..J. Optim. Theory Appl. 101 (1999), 449-474. MR 1684679, 10.1023/A:1021749829267
Reference: [8] Devroye, L., Györfy, L.: Nonparametric Density Estimation: The $L_1$ View..John Wiley, New York 1986.
Reference: [9] Dynkin, E. B., Yushkevich, A. A.: Controlled Markov Processes..Springer Verlag, New York 1979. MR 0554083
Reference: [10] Gordienko, E. I., Yushkevich, A. A.: Stability estimates in the problem of average optimal switching of a Markov chain..Math. Methods Oper. Res. 57 (2003), 345-365. Zbl 1116.90401, MR 1990916
Reference: [11] Gordienko, E. I., Lemus-Rodríguez, E., Montes-de-Oca, R.: Average cost Markov control processes: stability with respect to the Kantorovich metric..Math. Methods Oper. Res. 70 (2009), 13-33. Zbl 1176.60062, MR 2529423, 10.1007/s00186-008-0229-6
Reference: [12] Gordienko, E. I., Salem, F.: Robustness inequalities for Markov control processes with unbounded costs..Syst. Control Lett. 33 (1998), 125-130. MR 1607814, 10.1016/S0167-6911(97)00077-7
Reference: [13] Hernández-Lerma, O., Lasserre, J. B.: Further Topics on Discrete-time Markov Control Processes..Springer-Verlag, New York 1999. Zbl 0928.93002, MR 1697198
Reference: [14] Jaśkiewicz, A.: Average optimality for risk-sensitive control with general state space..Ann. Appl. Probab. 17 (2007), 654-675. Zbl 1128.93056, MR 2308338, 10.1214/105051606000000790
Reference: [15] Kartashov, N. V.: Strong Stable Markov Chains..VSP, Utrecht 1996. Zbl 0874.60082, MR 1451375
Reference: [16] Marcus, S. I., Fernández-Gaucherand, E., Hernández-Hernández, D. E., Coraluppi, S., Fard, P.: Risk sensitive Markov decision processes..Progress in System and Control Theory 22 (1997), 263-280. MR 1427787
Reference: [17] Masi, G. B. Di, Stettner, L.: Infinite horizon risk sensitive control of discrete time Markov processes with small risk..Systems Control Lett. 40 (2000), 15-20. Zbl 0977.93083, MR 1829070, 10.1016/S0167-6911(99)00118-8
Reference: [18] Meyn, S. P., Tweedie, R. L.: Markov Chains and Stochastic Stability..Springer-Verlag, London 1993. Zbl 1165.60001, MR 1287609
Reference: [19] Montes-de-Oca, R., Salem-Silva, F.: Estimates for perturbations of an average Markov decision processes with a minimal state and upper bounded stochastically ordered Markov chains..Kybernetika 41 (2005), 757-772. MR 2193864
Reference: [20] Muciek, B. K.: Optimal stopping of risk processes: model with interest rates..J. Appl. Probab. 39 (2002), 261-270. MR 1908943, 10.1239/jap/1025131424
Reference: [21] Shiryaev, A. N.: Optimal Stopping Rules..Springer-Verlag, New York 1978. Zbl 1138.60008, MR 2374974
Reference: [22] Shiryaev, A. N.: Essential of Stochastic Finance. Facts, Models, Theory..World Scientific Publishing Co., Inc., River Edge, N. J. 1999. MR 1695318
Reference: [23] Sladký, K.: Bounds on discrete dynamic programming recursions I..Kybernetika 16 (1980), 526-547. Zbl 0454.90085, MR 0607292
Reference: [24] Zaitseva, E.: Stability estimating in optimal stopping problem..Kybernetika 44 (2008), 400-415. Zbl 1154.60326, MR 2436040
.

Files

Files Size Format View
Kybernetika_50-2014-3_5.pdf 336.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo