Previous |  Up |  Next

Article

Title: Distances on the tropical line determined by two points (English)
Author: Puente, María Jesús de la
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 3
Year: 2014
Pages: 408-435
Summary lang: English
.
Category: math
.
Summary: Let $p'$ and $q'$ be points in $\mathbb{R}^n$. Write $p'\sim q'$ if $p'-q'$ is a multiple of $(1,\ldots,1)$. Two different points $p$ and $q$ in $\mathbb{R}^n/\sim$ uniquely determine a tropical line $L(p,q)$ passing through them and stable under small perturbations. This line is a balanced unrooted semi-labeled tree on $n$ leaves. It is also a metric graph. If some representatives $p'$ and $q'$ of $p$ and $q$ are the first and second columns of some real normal idempotent order $n$ matrix $A$, we prove that the tree $L(p,q)$ is described by a matrix $F$, easily obtained from $A$. We also prove that $L(p,q)$ is caterpillar. We prove that every vertex in $L(p,q)$ belongs to the tropical linear segment joining $p$ and $q$. A vertex, denoted $pq$, closest (w.r.t tropical distance) to $p$ exists in $L(p,q)$. Same for $q$. The distances between pairs of adjacent vertices in $L(p,q)$ and the distances $\operatorname{d}(p,pq)$, $\operatorname{d}(qp,q)$ and $\operatorname{d}(p,q)$ are certain entries of the matrix $|F|$. In addition, if $p$ and $q$ are generic, then the tree $L(p,q)$ is trivalent. The entries of $F$ are differences (i. e., sum of principal diagonal minus sum of secondary diagonal) of order 2 minors of the first two columns of $A$. (English)
Keyword: tropical distance
Keyword: integer length
Keyword: tropical line
Keyword: normal matrix
Keyword: idempotent matrix
Keyword: caterpillar tree
Keyword: metric graph
MSC: 05C50
MSC: 14T05
MSC: 15A80
idZBL: Zbl 06357558
idMR: MR3245538
DOI: 10.14736/kyb-2014-3-0408
.
Date available: 2014-07-29T13:16:58Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143883
.
Reference: [1] Akian, M., Bapat, R., Gaubert, S.: Max-plus algebra..In: Handbook of Linear Algebra (L. Hobgen, ed.), Chapman and Hall, Boca Raton 2007, chapter 25.
Reference: [2] Baccelli, F. L., Cohen, G., Olsder, G. J., Quadrat, J. P.: Synchronization and Linearity..John Wiley, Chichester, New York 1992. Zbl 0824.93003, MR 1204266
Reference: [3] Baker, M., Faber, X.: Metric properties of the tropical Abel-Jacobi map..J. Algebr. Comb. 33 (2011), 349-381. Zbl 1215.14060, MR 2772537, 10.1007/s10801-010-0247-3
Reference: [4] Billera, L. J., Holmes, S. P., Vogtmann, K.: Geometry of the space of phylogenetic trees..Adv. Appl. Math. 27 (2001), 4, 733-767. Zbl 0995.92035, MR 1867931, 10.1006/aama.2001.0759
Reference: [5] Brugallé, E.: Un peu de géométrie tropicale..Quadrature 74 (2009), 10-22. Zbl 1202.14055, 10.1051/quadrature/2009015
Reference: [6] Brugallé, E.: Some aspects of tropical geometry..Newsletter Europ. Math. Soc. 83 (2012), 23-28. Zbl 1285.14069, MR 2934649
Reference: [7] Butkovič, P.: Simple image set of $(\operatorname{max},+)$ linear mappings..Discrete Appl. Math. 105 (2000), 73-86. MR 1780462, 10.1016/S0166-218X(00)00212-2
Reference: [8] Butkovič, P.: Max-plus Linear Systems: Theory and Algorithms..Springer-Verlag, Berlin 2010. MR 2681232
Reference: [9] Chan, M.: Tropical hyperelliptic curves..J. Algebr. Comb. 37 (2013), 331-359. Zbl 1266.14050, MR 3011346, 10.1007/s10801-012-0369-x
Reference: [10] Cohen, G., Gaubert, S., Quadrat, J. P.: Duality and separation theorems in idempotent semimodules..Linear Algebra Appl. 379 (2004), 395-422. Zbl 1042.46004, MR 2039751
Reference: [11] Cuninghame-Green, R. A.: Minimax algebra..Lecture Notes in Econom and Math. Systems 166, Springer-Verlag, Berlin 1970. Zbl 0739.90073, MR 0580321
Reference: [12] Cuninghame-Green, R. A.: Minimax algebra and applications..In: Adv. Imag. Electr. Phys. 90 (P. Hawkes, ed.), Academic Press, New York 1995, pp. 1-121. Zbl 0739.90073
Reference: [13] Cuninghame-Green, R.A., Butkovič, P.: Bases in max-algebra..Linear Algebra Appl. 389 (2004) 107-120. Zbl 1059.15001, MR 2080398, 10.1016/j.laa.2004.03.022
Reference: [14] Develin, M., Sturmfels, B.: Tropical convexity..Doc. Math. 9 (2004), 1-27; Erratum in Doc. Math. 9 (electronic) (2004), 205-206. Zbl 1054.52004, MR 2054977
Reference: [15] Develin, M., Santos, F., Sturmfels, B.: On the rank of a tropical matrix..In: Discrete and Computational Geometry (E. Goodman, J. Pach and E. Welzl, eds.), MSRI Publications, Cambridge Univ. Press, Cambridge 2005, pp. 213-242. Zbl 1095.15001, MR 2178322
Reference: [16] Einsiedler, M., Kapranov, M., Lind, D.: Non-archimedean amoebas and tropical varieties..J. Reine Angew. Math. 601 (2006), 139-157. Zbl 1115.14051, MR 2289207
Reference: [17] Gathmann, A.: Tropical algebraic geometry..Jahresber. Deutsch. Math.-Verein 108 (2006), 1, 3-32. Zbl 1109.14038, MR 2219706
Reference: [18] Gaubert, S., Plus, Max: Methods and applications of $(\operatorname{max}, +)$ linear algebra..
Reference: [19] Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. New Models and Algorithms..Springer-Verlag, Berlin 2008. Zbl 1201.16038, MR 2389137
Reference: [20] (ed.), J. Gunawardena: Idempotency..Publications of the Newton Institute, Cambridge Univ. Press, Cambridge 1998. Zbl 1144.68006, MR 1608365
Reference: [21] Itenberg, I., Brugallé, E., Tessier, B.: Géométrie tropicale..Editions de l'École Polythecnique, Paris, 2008.
Reference: [22] Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry..Birkhäuser, Basel 2007. Zbl 1165.14002, MR 2292729
Reference: [23] Johnson, M., Kambites, M.: Idempotent tropical matrices and finite metric spaces..Adv. in Geom. 14 (2014), 2, 253-276. DOI: 10.1515/advgeom-2013-0034 (http://dx.doi.org/10.1515/advgeom-2013-0034) 10.1515/advgeom-2013-0034
Reference: [24] Jiménez, A., Puente, M. J. de la: Six combinatorial classes of maximal convex tropical polyhedra..ArXiv: 1205.4162 (http://arxiv.org/abs/1205.4162), 2012.
Reference: [25] Joyner, D., Ksir, A., Melles, C. G.: Automorphism groups on tropical curves. Some cohomology calculations..Beitr. Algebra Geom. 53 (2012), 1, 41-56. Zbl 1286.14077, MR 2890362, 10.1007/s13366-011-0049-3
Reference: [26] Linde, J., Puente, M. J. de la: Matrices commuting with a given normal tropical matrix..ArXiv: 1209.0660v2 (http://arxiv.org/abs/1209.0660), 2014.
Reference: [27] Litvinov, G. L., Maslov, V. P.: Idempotent mathematics and mathematical physics..Proc. Vienna 2003, American Mathematical Society, Contemp. Math. 377 (2005). Zbl 1069.00011, MR 2145152
Reference: [28] Litvinov, G. L., Sergeev, S. N.: Tropical and idempotent mathematics..Proc. Moscow 2007, American Mathematical Society, Contemp. Math. 495 (2009). Zbl 1172.00019, MR 2581510
Reference: [29] Mikhalkin, G.: Tropical geometry and its applications..In: Proc. International Congress of Mathematicians, ICM Madrid 2006, (M. Sanz-Solé et al., eds.), Invited lectures, v. II, EMS Ph., Zurich 2006, pp. 827-852. Zbl 1103.14034, MR 2275625
Reference: [30] Mikhalkin, G.: Moduli spaces of rational tropical curves..In: Proc. 13th Gökova Geometry-Topology Conference 2006 (S. Akbulut, T. Onder and R. J. Stern, eds.), International Press, Cambridge, MA 2007, pp. 39-51. Zbl 1203.14027, MR 2404949
Reference: [31] Mikhalkin, G.: What is a tropical curve?.Notices AMS 2007, 511-513. MR 2305295
Reference: [32] Puente, M. J. de la: On tropical Kleene star matrices and alcoved polytopes..Kybernetika 49 (2013), 6, 897-910. MR 3182647
Reference: [33] Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry..In: [27], pp. 289-317. Zbl 1093.14080, MR 2149011
Reference: [34] Speyer, D., Sturmfels, B.: The tropical Grassmannian..Adv. Geom. 4 (2004), 389-411. Zbl 1065.14071, MR 2071813, 10.1515/advg.2004.023
Reference: [35] Speyer, D., Sturmfels, B.: Tropical mathematics..Math. Mag. 82 (2009), 163-173. Zbl 1227.14051, MR 2522909, 10.4169/193009809X468760
Reference: [36] Sturmfels, B.: Solving systems of polynomial equations..CBMS Regional Conference Series in Math. 97, AMS, Providence 2002. Zbl 1101.13040, MR 1925796
Reference: [37] Sturmfels, B., Yu, J.: Classification of six-point metrics..Electron. J. Combinatorics 11 (2004), 44 pp. Zbl 1053.52019, MR 2097310
Reference: [38] Tabera, L. F.: Tropical constructive Pappus's theorem..IMRN 39 (2005), 2373-2389. MR 2181355, 10.1155/IMRN.2005.2373
Reference: [39] Viro, O.: Dequantization of real algebraic geometry on logarithmic paper..European Congress of Mathematics, Vol. I (Barcelona 2000), Prog. Math. 201, Birkhäuser, Basel, 2001, pp. 135-146. Zbl 1024.14026, MR 1905317
Reference: [40] Viro, O.: On basic concepts of tropical geometry..Proc. Steklov Inst. Math. 273 (2011), 252-282. Zbl 1237.14074, MR 2893551
Reference: [41] Wagneur, E.: Finitely generated moduloïds. The existence and unicity problem for bases..In: Analysis and Optimization of Systems, Antibes, 1988 (J. L. Lions and A. Bensoussan, eds.), LNCIS 111, Springer-Verlag, Berlin 1988, pp. 966-976. MR 0956331
Reference: [42] Yoeli, M.: A note on a generalization of boolean matrix theory..Amer. Math. Monthly 68 (1961), 6, 552-557. Zbl 0115.02103, MR 0126472, 10.2307/2311149
Reference: [43] Zimmermann, K.: Extremální algebra..Výzkumná publikace ekonomicko-matematické laboratoře při ekonomickém ústavu ČSAV 46 (1976), Prague 1976, in Czech.
.

Files

Files Size Format View
Kybernetika_50-2014-3_7.pdf 431.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo