Previous |  Up |  Next

Article

Title: Modal Pseudocomplemented De Morgan Algebras (English)
Author: Figallo, Aldo V.
Author: Oliva, Nora
Author: Ziliani, Alicia
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 53
Issue: 1
Year: 2014
Pages: 65-79
Summary lang: English
.
Category: math
.
Summary: Modal pseudocomplemented De Morgan algebras (or $mpM$-algebras for short) are investigated in this paper. This new equational class of algebras was introduced by A. V. Figallo and P. Landini ([Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.]) and they constitute a proper subvariety of the variety of all pseudocomplemented De Morgan algebras satisfying $x\wedge (\sim x)^\ast = (\sim (x\wedge (\sim x)^\ast ))^\ast $. Firstly, a topological duality for these algebras is described and a characterization of $mpM$-congruences in terms of special subsets of the associated space is shown. As a consequence, the subdirectly irreducible algebras are determined. Furthermore, from the above results on the $mpM$-congruences, the principal ones are described. In addition, it is proved that the variety of $mpM$-algebras is a discriminator variety and finally, the ternary discriminator polynomial is described. (English)
Keyword: pseudocomplemented De Morgan algebras
Keyword: Priestley spaces
Keyword: discriminator varieties
Keyword: congruences
MSC: 03G99
MSC: 06D15
MSC: 06D30
idZBL: Zbl 06416942
idMR: MR3331071
.
Date available: 2014-09-01T08:06:11Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143916
.
Reference: [1] Adams, M.: Principal congruences in De Morgan algebras. Proc. Edinb. Math. Soc. 30 (1987), 415–421. Zbl 0595.06013, MR 0908448, 10.1017/S0013091500026808
Reference: [2] Balbes, R., Dwinger, Ph.: Distributive Lattices. Univ. of Missouri Press, Columbia, 1974. Zbl 0321.06012, MR 0373985
Reference: [3] Birkhoff, G.: Lattice Theory. Amer. Math. Soc., Col. Pub., 25, 3rd ed., Providence, 1967. Zbl 0153.02501, MR 0227053
Reference: [4] Blok, W., Köler, P., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences II. Algebra Universalis 18 (1984), 334–379. MR 0745497, 10.1007/BF01203370
Reference: [5] Blok, W., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences I. Algebra Universalis 15 (1982), 195–227. Zbl 0512.08002, MR 0686803, 10.1007/BF02483723
Reference: [6] Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S.: Łukasiewicz–Moisil Algebras. North–Holland, Amsterdam, 1991. Zbl 0726.06007, MR 1112790
Reference: [7] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Graduate Texts in Mathematics, 78, Springer–Verlag, Berlin, 1981. Zbl 0478.08001, MR 0648287, 10.1007/978-1-4613-8130-3_3
Reference: [8] Cornish, W., Fowler, P.: Coproducts of De Morgan algebras. Bull. Aust. Math. Soc. 16 (1977), 1–13. Zbl 0329.06005, MR 0434907, 10.1017/S0004972700022966
Reference: [9] Figallo, A. V.: Tópicos sobre álgebras modales $4$-valuadas. In: Proceeding of the IX Simposio Latino–Americano de Lógica Matemática (Bahía Blanca, Argentina, 1992), Notas de Lógica Matemática 39 (1992), 145–157. MR 1332541
Reference: [10] Figallo, A. V., Landini, P.: Notes on $4$-valued modal algebras. Preprints del Instituto de Ciencias Básicas, Univ. Nac. de San Juan 1 (1990), 28–37.
Reference: [11] Font, J., Rius, M.: An abstract algebraic logic approach to tetravalent modal logics. J. Symbolic Logic 65 (2000), 481–518. Zbl 1013.03075, MR 1771068, 10.2307/2586552
Reference: [12] Fried, E., Pixley, A.: The dual discriminator function in universal algebra. Acta Sci. Math. 41 (1979), 83–100. Zbl 0395.08001, MR 0534502
Reference: [13] Glivenko, V.: Sur quelques points de la logique de M. Brouwer. Acad. Roy. Belg. Bull. Cl. Sci. 15 (1929), 183–188.
Reference: [14] Grätzer, G., Lakser, H.: The structure of pseudocomplemented distributive lattices II. Congruence extension and amalgamation. Trans. Amer. Math. Soc. 156 (1971), 343–358. Zbl 0244.06011, MR 0274359
Reference: [15] Kalman, J.: Lattices with involution. Trans. Amer. Math. Soc. 87 (1958), 485–491. Zbl 0228.06003, MR 0095135, 10.1090/S0002-9947-1958-0095135-X
Reference: [16] Hecht, T., Katriňák, T.: Principal congruences of $p$-algebras and double $p$-algebras. Proc. Amer. Math. Soc. 58 (1976), 25–31. Zbl 0352.06006, MR 0409293
Reference: [17] Loureiro, I.: Axiomatisation et propriétés des algèbres modales tétravalentes. C. R. Math. Acad. Sci. Paris 295, Série I (1982), 555–557. Zbl 0516.03010, MR 0685023
Reference: [18] Loureiro, I.: Algebras Modais Tetravalentes. PhD thesis, Faculdade de Ciências de Lisboa, Lisboa, Portugal, 1983.
Reference: [19] Priestley, H. A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2 (1970), 186–190. Zbl 0201.01802, MR 0265242, 10.1112/blms/2.2.186
Reference: [20] Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices. P. London Math. Soc. 24, 3 (1972), 507–530. Zbl 0323.06011, MR 0300949, 10.1112/plms/s3-24.3.507
Reference: [21] Priestley, H. A.: Ordered sets and duality for distributive lattices. Ann. Discrete Math. 23 (1984), 39–60. Zbl 0557.06007, MR 0779844
Reference: [22] Ribenboim, P.: Characterization of the sup-complement in a distributive lattice with last element. Surma Brasil Math. 2 (1949), 43–49. Zbl 0040.01003, MR 0030931
Reference: [23] Romanowska, A.: Subdirectly irreducible pseudocomplemented De Morgan algebras. Algebra Universalis 12 (1981), 70–75. Zbl 0457.06009, MR 0608649, 10.1007/BF02483864
Reference: [24] Sankappanavar, H.: Pseudocomplemented Okham and Demorgan algebras. Z. Math. Logik Grundlagen Math. 32 (1986), 385–394. MR 0860024, 10.1002/malq.19860322502
Reference: [25] Sankappanavar, H.: Principal congruences of pseudocomplemented Demorgan algebras. Z. Math. Logik Grundlagen Math. 33 (1987), 3–11. Zbl 0624.06016, MR 0885477, 10.1002/malq.19870330102
Reference: [26] Varlet, J.: Algèbres de Łukasiewicz trivalentes. Bull. Soc. Roy. Liège (1968), 9–10.
Reference: [27] Werner, H.: Discriminator–Algebras. Algebraic representation and modal theoretic properties, Akademie–Verlag, Berlin, 1978. Zbl 0374.08002, MR 0526402
.

Files

Files Size Format View
ActaOlom_53-2014-1_5.pdf 260.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo