Previous |  Up |  Next

Article

Title: Stability of Tangential Locally Conformal Symplectic Forms (English)
Author: Ida, Cristian
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 53
Issue: 1
Year: 2014
Pages: 81-89
Summary lang: English
.
Category: math
.
Summary: In this paper we firstly define a tangential Lichnerowicz cohomology on foliated manifolds. Next, we define tangential locally conformal symplectic forms on a foliated manifold and we formulate and prove some results concerning their stability. (English)
Keyword: foliated manifold
Keyword: tangential Lichnerowicz cohomology
Keyword: tangential locally conformal symplectic structure
Keyword: stability
MSC: 53C12
MSC: 53D99
MSC: 57R17
MSC: 58A12
idZBL: Zbl 1318.53018
idMR: MR3331072
.
Date available: 2014-09-01T08:09:23Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143917
.
Reference: [1] Banyaga, A.: Some properties of locally conformal symplectic structures. Comment. Math. Helv. 77, 2 (2002), 383–398. Zbl 1020.53050, MR 1915047, 10.1007/s00014-002-8345-z
Reference: [2] Banyaga, A.: Examples of non $d_{\omega }$-exact locally conformal symplectic forms. Journal of Geometry 87, 1-2 (2007), 1–13. Zbl 1157.53040, MR 2372512, 10.1007/s00022-006-1849-8
Reference: [3] Bande, G., Kotschick, D.: Moser stability for locally conformally symplectic structures. Proc. Amer. Math. Soc. 137 (2009), 2419–2424. Zbl 1176.53081, MR 2495277, 10.1090/S0002-9939-09-09821-9
Reference: [4] Bott, R., Tu, L. W.: Differential Forms in Algebraic Topology. Graduate Text in Math. 82 Springer-Verlag, Berlin, 1982. Zbl 0496.55001, MR 0658304
Reference: [5] Datta, M., Islam, Md R.: Smooth maps of a foliated manifold in a symplectic manifold. Proc. Indian Acad. Sci. (Math. Sci.) 119, 3 (2009), 333–343. Zbl 1173.53309, MR 2547696, 10.1007/s12044-009-0025-0
Reference: [6] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Geometric and Algebraic Toplogical Methods in Quantum Mechanics. World Scientific, Singapore, 2005. MR 2218620
Reference: [7] Guedira, F., Lichnerowicz, A.: Geometrie des algebres de Lie locales de Kirillov. J. Math. Pures et Appl. 63 (1984), 407–484. Zbl 0562.53029, MR 0789560
Reference: [8] Haller, S., Rybicki, T.: On the Group of Diffeomorphisms Preserving a Locally Conformal Symplectic Structure. Annals of Global Analysis and Geometry 17, 5 (1999), 475–502. Zbl 0940.53044, MR 1715157, 10.1023/A:1006650124434
Reference: [9] Hector, G., Macias, E., Saralegi, M.: Lemme de Moser feuilleté et classification des variétés de Poisson réguliéres. Publ. Mat. 33 (1989), 423–430. Zbl 0716.58011, MR 1038481, 10.5565/PUBLMAT_33389_04
Reference: [10] El Kacimi, A. A.: Sur la cohomologie feuilletée. Compositio Mathematica 49, 2 (1983), 195–215. Zbl 0516.57017, MR 0704391
Reference: [11] Lee, H. C.: A kind of even-dimensional differential geometry and its application to exterior calculus. Amer. J. Math. 65 (1943), 433–438. Zbl 0060.38302, MR 0008495, 10.2307/2371967
Reference: [12] de León, M., López, B., Marrero, J. C., Padrón, E.: On the computation of the Lichnerowicz–Jacobi cohomology. J. Geom. Phys. 44 (2003), 507–522. Zbl 1092.53060, MR 1943175, 10.1016/S0393-0440(02)00056-6
Reference: [13] Lichnerowicz, A.: Les variétés de Poisson et leurs algébres de Lie associées. J. Differential Geom. 12, 2 (1977), 253–300. Zbl 0405.53024, MR 0501133
Reference: [14] Molino, P.: Riemannian foliations. Progress in Mathematics 73 Birkhäuser, Boston, 1988. Zbl 0668.57023, MR 0932463
Reference: [15] Moore, C. C., Schochet, C.: Global Analysis on Foliated Spaces. MSRI Publications 9 Springer-Verlag, New York, 1988. Zbl 0648.58034, MR 0918974
Reference: [16] Moser, J.: On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965), 286–294. Zbl 0141.19407, MR 0182927, 10.1090/S0002-9947-1965-0182927-5
Reference: [17] Mümken, B.: On Tangential Cohomology of Riemannian Foliations. American J. Math. 128, 6 (2006), 1391–1408. Zbl 1111.53025, MR 2275025, 10.1353/ajm.2006.0047
Reference: [18] Novikov, S. P.: The Hamiltonian formalism and a multivalued analogue of Morse theory. Uspekhi Mat. Nauk 37 (1982), 3-49. (1982), 3–49 (in Russian). MR 0676612
Reference: [19] Ornea, L., Verbitsky, M.: Morse–Novikov cohomology of locally conformally Kähler manifolds. J. of Geometry and Physics 59 (2009), 295–305. Zbl 1161.57015, MR 2501742, 10.1016/j.geomphys.2008.11.003
Reference: [20] Rybicki, T.: On foliated, Poisson and Hamiltonian diffeomorphisms. Diff. Geom. Appl. 15 (2001), 33–46. Zbl 0988.22010, MR 1845174, 10.1016/S0926-2245(01)00042-0
Reference: [21] Tondeur, Ph.: Foliations on Riemannian Manifolds. Universitext, Springer-Verlag, 1988. Zbl 0643.53024, MR 0934020
Reference: [22] Vaisman, I.: Variétés riemanniene feuilletées. Czechoslovak Math. J. 21 (1971), 46–75.
Reference: [23] Vaisman, I.: Remarkable operators and commutation formulas on locally conformal Kähler manifolds. Compositio Math. 40, 3 (1980), 287–299. Zbl 0401.53019, MR 0571051
Reference: [24] Vaisman, I.: Locally conformal symplectic manifolds. Internat. J. Math. and Math. Sci. 8, 3 (1985), 521–536. Zbl 0585.53030, MR 0809073
.

Files

Files Size Format View
ActaOlom_53-2014-1_6.pdf 237.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo