Previous |  Up |  Next

Article

Keywords:
foliated manifold; tangential Lichnerowicz cohomology; tangential locally conformal symplectic structure; stability
Summary:
In this paper we firstly define a tangential Lichnerowicz cohomology on foliated manifolds. Next, we define tangential locally conformal symplectic forms on a foliated manifold and we formulate and prove some results concerning their stability.
References:
[1] Banyaga, A.: Some properties of locally conformal symplectic structures. Comment. Math. Helv. 77, 2 (2002), 383–398. DOI 10.1007/s00014-002-8345-z | MR 1915047 | Zbl 1020.53050
[2] Banyaga, A.: Examples of non $d_{\omega }$-exact locally conformal symplectic forms. Journal of Geometry 87, 1-2 (2007), 1–13. DOI 10.1007/s00022-006-1849-8 | MR 2372512 | Zbl 1157.53040
[3] Bande, G., Kotschick, D.: Moser stability for locally conformally symplectic structures. Proc. Amer. Math. Soc. 137 (2009), 2419–2424. DOI 10.1090/S0002-9939-09-09821-9 | MR 2495277 | Zbl 1176.53081
[4] Bott, R., Tu, L. W.: Differential Forms in Algebraic Topology. Graduate Text in Math. 82 Springer-Verlag, Berlin, 1982. MR 0658304 | Zbl 0496.55001
[5] Datta, M., Islam, Md R.: Smooth maps of a foliated manifold in a symplectic manifold. Proc. Indian Acad. Sci. (Math. Sci.) 119, 3 (2009), 333–343. DOI 10.1007/s12044-009-0025-0 | MR 2547696 | Zbl 1173.53309
[6] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Geometric and Algebraic Toplogical Methods in Quantum Mechanics. World Scientific, Singapore, 2005. MR 2218620
[7] Guedira, F., Lichnerowicz, A.: Geometrie des algebres de Lie locales de Kirillov. J. Math. Pures et Appl. 63 (1984), 407–484. MR 0789560 | Zbl 0562.53029
[8] Haller, S., Rybicki, T.: On the Group of Diffeomorphisms Preserving a Locally Conformal Symplectic Structure. Annals of Global Analysis and Geometry 17, 5 (1999), 475–502. DOI 10.1023/A:1006650124434 | MR 1715157 | Zbl 0940.53044
[9] Hector, G., Macias, E., Saralegi, M.: Lemme de Moser feuilleté et classification des variétés de Poisson réguliéres. Publ. Mat. 33 (1989), 423–430. DOI 10.5565/PUBLMAT_33389_04 | MR 1038481 | Zbl 0716.58011
[10] El Kacimi, A. A.: Sur la cohomologie feuilletée. Compositio Mathematica 49, 2 (1983), 195–215. MR 0704391 | Zbl 0516.57017
[11] Lee, H. C.: A kind of even-dimensional differential geometry and its application to exterior calculus. Amer. J. Math. 65 (1943), 433–438. DOI 10.2307/2371967 | MR 0008495 | Zbl 0060.38302
[12] de León, M., López, B., Marrero, J. C., Padrón, E.: On the computation of the Lichnerowicz–Jacobi cohomology. J. Geom. Phys. 44 (2003), 507–522. DOI 10.1016/S0393-0440(02)00056-6 | MR 1943175 | Zbl 1092.53060
[13] Lichnerowicz, A.: Les variétés de Poisson et leurs algébres de Lie associées. J. Differential Geom. 12, 2 (1977), 253–300. MR 0501133 | Zbl 0405.53024
[14] Molino, P.: Riemannian foliations. Progress in Mathematics 73 Birkhäuser, Boston, 1988. MR 0932463 | Zbl 0668.57023
[15] Moore, C. C., Schochet, C.: Global Analysis on Foliated Spaces. MSRI Publications 9 Springer-Verlag, New York, 1988. MR 0918974 | Zbl 0648.58034
[16] Moser, J.: On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965), 286–294. DOI 10.1090/S0002-9947-1965-0182927-5 | MR 0182927 | Zbl 0141.19407
[17] Mümken, B.: On Tangential Cohomology of Riemannian Foliations. American J. Math. 128, 6 (2006), 1391–1408. DOI 10.1353/ajm.2006.0047 | MR 2275025 | Zbl 1111.53025
[18] Novikov, S. P.: The Hamiltonian formalism and a multivalued analogue of Morse theory. Uspekhi Mat. Nauk 37 (1982), 3-49. (1982), 3–49 (in Russian). MR 0676612
[19] Ornea, L., Verbitsky, M.: Morse–Novikov cohomology of locally conformally Kähler manifolds. J. of Geometry and Physics 59 (2009), 295–305. DOI 10.1016/j.geomphys.2008.11.003 | MR 2501742 | Zbl 1161.57015
[20] Rybicki, T.: On foliated, Poisson and Hamiltonian diffeomorphisms. Diff. Geom. Appl. 15 (2001), 33–46. DOI 10.1016/S0926-2245(01)00042-0 | MR 1845174 | Zbl 0988.22010
[21] Tondeur, Ph.: Foliations on Riemannian Manifolds. Universitext, Springer-Verlag, 1988. MR 0934020 | Zbl 0643.53024
[22] Vaisman, I.: Variétés riemanniene feuilletées. Czechoslovak Math. J. 21 (1971), 46–75.
[23] Vaisman, I.: Remarkable operators and commutation formulas on locally conformal Kähler manifolds. Compositio Math. 40, 3 (1980), 287–299. MR 0571051 | Zbl 0401.53019
[24] Vaisman, I.: Locally conformal symplectic manifolds. Internat. J. Math. and Math. Sci. 8, 3 (1985), 521–536. MR 0809073 | Zbl 0585.53030
Partner of
EuDML logo