Previous |  Up |  Next

Article

Title: The influence of weakly-supplemented subgroups on the structure of finite groups (English)
Author: Kong, Qingjun
Author: Liu, Qingfeng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 173-182
Summary lang: English
.
Category: math
.
Summary: A subgroup $H$ of a finite group $G$ is weakly-supplemented in $G$ if there exists a proper subgroup $K$ of $G$ such that $G=HK$. In the paper it is proved that a finite group $G$ is $p$-nilpotent provided $p$ is the smallest prime number dividing the order of $G$ and every minimal subgroup of $P\cap G'$ is weakly-supplemented in $N_{G}(P),$ where $P$ is a Sylow $p$-subgroup of $G$. As applications, some interesting results with weakly-supplemented minimal subgroups of $P\cap G'$ are obtained. (English)
Keyword: weakly-supplemented subgroup
Keyword: $p$-nilpotent group
Keyword: supersolvable group
MSC: 20D10
MSC: 20D20
idZBL: Zbl 06391485
idMR: MR3247453
DOI: 10.1007/s10587-014-0092-y
.
Date available: 2014-09-29T09:50:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143958
.
Reference: [1] Arad, Z., Ward, M. B.: New criteria for the solvability of finite groups.J. Algebra 77 (1982), 234-246. Zbl 0486.20018, MR 0665175, 10.1016/0021-8693(82)90288-5
Reference: [2] Asaad, M., Ramadan, M., Shaalan, A.: Influence of $\pi$-quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group.Arch. Math. 56 (1991), 521-527. Zbl 0738.20026, MR 1106492, 10.1007/BF01246766
Reference: [3] Ballester-Bolinches, A., Guo, X.: On complemented subgroups of finite groups.Arch. Math. 72 (1999), 161-166. Zbl 0929.20015, MR 1671273, 10.1007/s000130050317
Reference: [4] Doerk, K.: Minimal nicht überauflösbare, endliche Gruppen.German Math. Z. 91 (1966), 198-205. Zbl 0135.05401, MR 0191962, 10.1007/BF01312426
Reference: [5] Hall, P.: A characteristic property of soluble groups.J. Lond. Math. Soc. 12 (1937), 188-200. Zbl 0016.39204, MR 1575073
Reference: [6] Hall, P.: Complemented groups.J. Lond. Math. Soc. 12 (1937), 201-204. Zbl 0016.39301, MR 1575074, 10.1112/jlms/s1-12.2.201
Reference: [7] Huppert, B.: Endliche Gruppen I.German Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin (1967). Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [8] Kang, P.: Minimal subgroups and the structure of finite groups.Ric. Mat. 62 (2013), 91-95. MR 3057386, 10.1007/s11587-012-0142-4
Reference: [9] Li, D., Guo, X.: The influence of $c$-normality of subgroups on the structure of finite groups. II.Commun. Algebra 26 (1998), 1913-1922. Zbl 0906.20012, MR 1621704, 10.1080/00927879808826248
Reference: [10] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80 Springer, New York (1993). MR 1261639
.

Files

Files Size Format View
CzechMathJ_64-2014-1_16.pdf 254.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo