Previous |  Up |  Next

Article

Title: Ramanujan-Fourier series and the conjecture D of Hardy and Littlewood (English)
Author: Gadiyar, H. Gopalakrishna
Author: Padma, Ramanathan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 1
Year: 2014
Pages: 251-267
Summary lang: English
.
Category: math
.
Summary: We give a heuristic proof of a conjecture of Hardy and Littlewood concerning the density of prime pairs to which twin primes and Sophie Germain primes are special cases. The method uses the Ramanujan-Fourier series for a modified von Mangoldt function and the Wiener-Khintchine theorem for arithmetical functions. The failing of the heuristic proof is due to the lack of justification of interchange of certain limits. Experimental evidence using computer calculations is provided for the plausibility of the result. We have also shown that our argument can be extended to the $m$-tuple conjecture of Hardy and Littlewood. (English)
Keyword: Ramanujan-Fourier series
Keyword: von Mangoldt function
Keyword: twin primes
Keyword: Sophie Germain prime
Keyword: Wiener-Khintchine theorem
MSC: 11K65
MSC: 11N05
MSC: 62M10
MSC: 62M15
idZBL: Zbl 06391491
idMR: MR3247459
DOI: 10.1007/s10587-014-0098-5
.
Date available: 2014-09-29T10:04:31Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143964
.
Reference: [1] Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P.Ann. Math. 160 (2004), 781-793. Zbl 1071.11070, MR 2123939
Reference: [2] Brun, V.: The sieve of Eratosthenes and the theorem of Goldbach.The Goldbach Conjecture Y. Wang Series in Pure Mathematics 4 World Scientific, Singapore (2002), 99-136. MR 0677199
Reference: [3] Carmichael, R. D.: Expansions of arithmetical functions in infinite series.Proc. Lond. Math. Soc., II. Ser. 34 (1932), 1-26. Zbl 0004.29305, MR 1576142, 10.1112/plms/s2-34.1.1
Reference: [4] Cojocaru, A. C., Murty, M. R.: An Introduction to Sieve Methods and their Applications.London Mathematical Society Lecture Note Series 66 Cambridge University Press, Cambridge (2006). Zbl 1121.11063, MR 2200366
Reference: [5] Dickson, L. E.: History of the Theory of Numbers, Vol. I: Divisibility and Primality. Reprint of the 1919 original.Chelsea Publishing New York (1966). MR 0245499
Reference: [6] Einstein, A.: Method for the determination of the statistical values of observations concerning quantities subject to irregular fluctuations.Arch. Sci. Phys. et Natur. 37 (1914), 254-256.
Reference: [7] Gadiyar, H. G., Padma, R.: Ramanujan-Fourier series, the Wiener-Khintchine formula and the distribution of prime pairs.Phys. A 269 (1999), 503-510. MR 1702866, 10.1016/S0378-4371(99)00171-5
Reference: [8] Golomb, S. W.: The lambda method in prime number theory.J. Number Theory 2 (1970), 193-198. Zbl 0198.37601, MR 0257013, 10.1016/0022-314X(70)90019-3
Reference: [9] Hardy, G. H.: Goldbach's Theorem. (A lecture to the Math. Soc. of Copenhague on 6. October 1921).Mat. Tidsskr. B 1922 (1922), 1-16.
Reference: [10] Hardy, G. H.: Note on Ramanujan's trigonometrical function $c_q(n)$ and certain series of arithmetical functions.Cambr. Phil. Soc. Proc. 20 (1921), 263-271.
Reference: [11] Hardy, G. H.: Some Famous Problems of the Theory of Numbers and in Particular Waring's Problem. An inaugural lecture delivered before the University of Oxford.Clarendon Press Oxford (1920).
Reference: [12] Hardy, G. H., Littlewood, J. E.: Some problems of ``Partitio numerorum'' III: On the expression of a number as a sum of primes.Acta Math. 44 (1923), 1-70. MR 1555183, 10.1007/BF02403921
Reference: [13] Hardy, G. H., Ramanujan, S.: Asymptotic formulae in combinatory analysis.Lond. M. S. Proc. 17 (1918), 75-115; Collected Papers of Srinivasa Ramanujan AMS Chelsea Publ., Providence (2000), 276-309. MR 2280879
Reference: [14] Khintchine, A.: Korrelationstheorie der stationären stochastischen Prozesse.Math. Ann. 109 (1934), 604-615 German. Zbl 0008.36806, MR 1512911, 10.1007/BF01449156
Reference: [15] Kittel, C.: Elementary Statistical Physics.John Wiley New York (1958). MR 0096402
Reference: [16] Rademacher, H.: Topics in Analytic Number Theory.E. Grosswald et al. Die Grundlehren der mathematischen Wissenschaften. Band 169 Springer, New York (1973). Zbl 0253.10002, MR 0364103
Reference: [17] Ramanujan, S.: On certain trigonometrical sums and their applications in the theory of numbers.Trans. Cambridge Philos. Soc. 22 (1918), 259-276; Collected Papers of Srinivasa Ramanujan AMS Chelsea Publ., Providence (2000), 179-199. MR 2280864
Reference: [18] Stinson, D. R.: Cryptography. Theory and Practice.Series on Discrete Mathematics and its Applications CRC Press, Boca Raton (1995). Zbl 0855.94001, MR 1327060
Reference: [19] Wiener, N.: Generalized harmonic analysis.Acta Math. 55 (1930), 117-258. MR 1555316, 10.1007/BF02546511
Reference: [20] Yaglom, A. M.: Einstein's 1914 paper on the theory of irregularly fluctuating series of observations.ASSP Magazine, IEEE 4 (1987), 7-11. 10.1109/MASSP.1987.1165596
Reference: [21] Zhang, Y.: Bounded gaps between primes.Annals of Math. 179 (2014), 1121-1174. Zbl 1290.11128, MR 3171761, 10.4007/annals.2014.179.3.7
.

Files

Files Size Format View
CzechMathJ_64-2014-1_22.pdf 289.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo