[2] Babuška, I., Osborn, J.:
Eigenvalue problems. P. G. Ciarlet, et al. Handbook of Numerical Analysis. Volume II: Finite element methods (Part 1) North-Holland Amsterdam (1991), 641-787.
MR 1115240
[10] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978).
MR 0520174 |
Zbl 0383.65058
[12] Golub, G. H., Loan, C. F. Van:
Matrix Computations. (3rd ed.). The Johns Hopkins Univ. Press Baltimore (1996).
MR 1417720
[13] Hackbusch, W.:
Multi-Grid Methods and Applications. Springer Series in Computational Mathematics 4 Springer, Berlin (1985).
Zbl 0595.65106
[15] Huang, P., He, Y., Feng, X.:
Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem. Math. Probl. Eng. 2011 (2011), Article ID 745908, 14 pages.
MR 2826898 |
Zbl 1235.74286
[16] Huang, P., He, Y., Feng, X.:
Two-level stabilized finite element method for the Stokes eigenvalue problem. Appl. Math. Mech., Engl. Ed. 33 (2012), 621-630.
DOI 10.1007/s10483-012-1575-7 |
MR 2978223
[22] Peters, G., Wilkinson, J. H.:
Inverse iteration, ill-conditioned equations and Newton's method. SIAM Rev. 21 (1979), 339-360.
DOI 10.1137/1021052 |
MR 0535118
[23] Roos, H.-G., Stynes, M., Tobiska, L.:
Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. (2nd ed.). Springer Series in Computational Mathematics 24 Springer, Berlin (2008).
MR 2454024 |
Zbl 1155.65087
[28] Yang, Y., Bi, H.:
Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 49 (2011), 1602-1624.
DOI 10.1137/100810241 |
MR 2831063 |
Zbl 1236.65143