Previous |  Up |  Next

Article

Keywords:
accelerated two grid method; Stokes eigenvalue problem; stabilized method; equal-order pair; error estimate
Summary:
This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical error estimate which allows a much coarser mesh to achieve the same asymptotic convergence rate. Finally, numerical experiments are shown to verify the high efficiency and the theoretical results of the new method.
References:
[1] Babuška, I., Osborn, J. E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52 (1989), 275-297. DOI 10.1090/S0025-5718-1989-0962210-8 | MR 0962210
[2] Babuška, I., Osborn, J.: Eigenvalue problems. P. G. Ciarlet, et al. Handbook of Numerical Analysis. Volume II: Finite element methods (Part 1) North-Holland Amsterdam (1991), 641-787. MR 1115240
[3] Becker, R., Hansbo, P.: A simple pressure stabilization method for the Stokes equation. Commun. Numer. Methods Eng. 24 (2008), 1421-1430. DOI 10.1002/cnm.1041 | MR 2474694 | Zbl 1153.76036
[4] Bochev, P. B., Dohrmann, C. R., Gunzburger, M. D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44 (2006), 82-101 (electronic). DOI 10.1137/S0036142905444482 | MR 2217373 | Zbl 1145.76015
[5] Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numerica 19 (2010), 1-120. DOI 10.1017/S0962492910000012 | MR 2652780 | Zbl 1242.65110
[6] Chen, H., He, Y., Li, Y., Xie, H.: A multigrid method based on shifted-inverse power technique for eigenvalue problem. http://arxiv.org/pdf/1401.5378v3 (2014). MR 3386235
[7] Chen, H., Jia, S., Xie, H.: Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems. Appl. Math., Praha 54 (2009), 237-250. DOI 10.1007/s10492-009-0015-7 | MR 2530541 | Zbl 1212.65431
[8] Chen, H., Jia, S., Xie, H.: Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem. Appl. Numer. Math. 61 (2011), 615-629. DOI 10.1016/j.apnum.2010.12.007 | MR 2754580 | Zbl 1209.65126
[9] Chien, C. S., Jeng, B. W.: A two-grid discretization scheme for semilinear elliptic eigenvalue problems. SIAM J. Sci. Comput. 27 (2006), 1287-1304. DOI 10.1137/030602447 | MR 2199749 | Zbl 1095.65100
[10] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). MR 0520174 | Zbl 0383.65058
[11] Feng, X., Kim, I., Nam, H., Sheen, D.: Locally stabilized $P_1$-nonconforming quadrilateral and hexahedral finite element methods for the Stokes equations. J. Comput. Appl. Math. 236 (2011), 714-727. DOI 10.1016/j.cam.2011.06.009 | MR 2853496 | Zbl 1233.65088
[12] Golub, G. H., Loan, C. F. Van: Matrix Computations. (3rd ed.). The Johns Hopkins Univ. Press Baltimore (1996). MR 1417720
[13] Hackbusch, W.: Multi-Grid Methods and Applications. Springer Series in Computational Mathematics 4 Springer, Berlin (1985). Zbl 0595.65106
[14] Hu, X., Cheng, X.: Acceleration of a two-grid method for eigenvalue problems. Math. Comput. 80 (2011), 1287-1301. DOI 10.1090/S0025-5718-2011-02458-0 | MR 2785459 | Zbl 1232.65141
[15] Huang, P., He, Y., Feng, X.: Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem. Math. Probl. Eng. 2011 (2011), Article ID 745908, 14 pages. MR 2826898 | Zbl 1235.74286
[16] Huang, P., He, Y., Feng, X.: Two-level stabilized finite element method for the Stokes eigenvalue problem. Appl. Math. Mech., Engl. Ed. 33 (2012), 621-630. DOI 10.1007/s10483-012-1575-7 | MR 2978223
[17] Kolman, K.: A two-level method for nonsymmetric eigenvalue problems. Acta Math. Appl. Sin., Engl. Ser. 21 (2005), 1-12. DOI 10.1007/s10255-005-0209-z | MR 2123599 | Zbl 1084.65109
[18] Li, J., He, Y.: A stabilized finite element method based on two local Gauss integrations for the Stokes equations. J. Comput. Appl. Math. 214 (2008), 58-65. DOI 10.1016/j.cam.2007.02.015 | MR 2391672 | Zbl 1132.35436
[19] Li, H., Yang, Y.: The adaptive finite element method based on multi-scale discretizations for eigenvalue problems. Comput. Math. Appl. 65 (2013), 1086-1102. DOI 10.1016/j.camwa.2013.01.043 | MR 3028637 | Zbl 1266.65196
[20] Lovadina, C., Lyly, M., Stenberg, R.: A posteriori estimates for the Stokes eigenvalue problem. Numer. Methods Partial Differ. Equations 25 (2009), 244-257. DOI 10.1002/num.20342 | MR 2473688 | Zbl 1169.65109
[21] Mercier, B., Osborn, J., Rappaz, J., Raviart, P.-A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36 (1981), 427-453. DOI 10.1090/S0025-5718-1981-0606505-9 | MR 0606505 | Zbl 0472.65080
[22] Peters, G., Wilkinson, J. H.: Inverse iteration, ill-conditioned equations and Newton's method. SIAM Rev. 21 (1979), 339-360. DOI 10.1137/1021052 | MR 0535118
[23] Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. (2nd ed.). Springer Series in Computational Mathematics 24 Springer, Berlin (2008). MR 2454024 | Zbl 1155.65087
[24] Weng, Z., Feng, X., Zhai, S.: Investigations on two kinds of two-grid mixed finite element methods for the elliptic eigenvalue problem. Comput. Math. Appl. 64 (2012), 2635-2646. DOI 10.1016/j.camwa.2012.07.009 | MR 2970840 | Zbl 1268.65157
[25] Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15 (1994), 231-237. DOI 10.1137/0915016 | MR 1257166 | Zbl 0795.65077
[26] Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33 (1996), 1759-1777. DOI 10.1137/S0036142992232949 | MR 1411848 | Zbl 0860.65119
[27] Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70 (2001), 17-25. DOI 10.1090/S0025-5718-99-01180-1 | MR 1677419 | Zbl 0959.65119
[28] Yang, Y., Bi, H.: Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 49 (2011), 1602-1624. DOI 10.1137/100810241 | MR 2831063 | Zbl 1236.65143
[29] Yang, Y., Fan, X.: Generalized Rayleigh quotient and finite element two-grid discretization schemes. Sci. China, Ser. A 52 (2009), 1955-1972. DOI 10.1007/s11425-009-0016-8 | MR 2545001 | Zbl 1188.65151
[30] Yin, X., Xie, H., Jia, S., Gao, S.: Asymptotic expansions and extrapolations of eigenvalues for the Stokes problem by mixed finite element methods. J. Comput. Appl. Math. 215 (2008), 127-141. DOI 10.1016/j.cam.2007.03.028 | MR 2400623 | Zbl 1149.65090
Partner of
EuDML logo