Title:
|
Optimization of Parameters in the Menzerath–Altmann Law, II (English) |
Author:
|
Andres, Jan |
Author:
|
Benešová, Martina |
Author:
|
Chvosteková, Martina |
Author:
|
Fišerová, Eva |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2014 |
Pages:
|
5-28 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper continues our studies released under the same title [Andres, J., Kubáček, L., Machalová, J., Tučková, M.: Optimization of parameters in the Menzerath–Altmann law Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 1 (2012), 5–27.]. As the main result justifying the conclusions in [Andres, J., Kubáček, L., Machalová, J., Tučková, M.: Optimization of parameters in the Menzerath–Altmann law Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 1 (2012), 5–27.], the theorem is presented enunciating that the English original of Poe’s celebrated poem Raven is a language fractal only w.r.t. the application of the simplest truncated formulas of the Menzerath–Altmann law, but not w.r.t. other applied formulas under our consideration. Moreover, the related degree of semanticity is calculated in these cases, including the naive intervals of such a degree. A suitability of the applied formulas is discussed from the point of view of a verbal version of the Menzerath–Altmann law (i.e. the tendency of the approximating functions is to be decreasing) and by means of quantitative criteria characterizing the accuracy of fitted data. Our discussion extends the traditional approaches to the Menzerath–Altmann law. (English) |
Keyword:
|
Menzerath–Altmann law |
Keyword:
|
fractal analysis |
Keyword:
|
accuracy of data approximations |
Keyword:
|
accuracy of shape parameter estimates |
Keyword:
|
optimal usage of formulas |
MSC:
|
62F25 |
MSC:
|
62J05 |
MSC:
|
91F20 |
idZBL:
|
Zbl 1310.62037 |
idMR:
|
MR3331003 |
. |
Date available:
|
2014-12-16T14:51:50Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144035 |
. |
Reference:
|
[1] Altmann, G.: Prolegomena to Menzerath’s law. Glottometrika 2 (1980), 1–10. |
Reference:
|
[2] Altmann, G., Schwibbe, M. H.: Das Menzerathsche Gesetz in informations – verarbeitenden Systemen. Olms, Hildesheim, 1989. |
Reference:
|
[3] Andres, J.: The Moran–Hutchinson formula in terms of Menzerath–Altmann’s law and Zipf–Mandelbrot’s law. In: Altmann, G., Čech, R., Mačutek, J., Uhlířová, L. (eds.): Empirical Approaches to Text and Language Analysis. Studies in Quantitative Linguistics 17, RAM-Verlag, Lüdenscheid, 2014, 29–44. |
Reference:
|
[4] Andres, J., Kubáček, L., Machalová, J., Tučková, M.: Optimization of parameters in the Menzerath–Altmann law. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 51, 1 (2012), 5–27. Zbl 1275.91115, MR 3060005 |
Reference:
|
[5] Andres, J.: On de Saussure’s principle of linearity and visualization of language structures. Glottotheory 2, 2 (2009), 1–14. 10.1515/glot-2009-0015 |
Reference:
|
[6] Andres, J.: On a conjecture about the fractal structure of language. Journal of Quantitative Linguistics 17, 2 (2010), 101–122. 10.1080/09296171003643189 |
Reference:
|
[7] Andres, J., Benešová, M.: Fractal analysis of Poe’s Raven. Glottometrics 21 (2011), 73–98. |
Reference:
|
[8] Andres, J., Benešová, M.: Fractal analysis of Poe’s Raven, II. Journal of Quantitative Linguistics 19, 4 (2012), 301–324. 10.1080/09296174.2012.714538 |
Reference:
|
[9] Andres, J., Benešová, M., Kubáček, L., Vrbková, J.: Methodological note on the fractal analysis of texts. Journal of Quantitative Linguistics 19, 1 (2012), 1–31. 10.1080/09296174.2011.608604 |
Reference:
|
[10] Chatterjee, S., Hadi, A. S.: Regression Analysis by Example. John Wiley & Sons, Inc., Hoboken, New Jersey, 2006. Zbl 1250.62035 |
Reference:
|
[11] Cramer, I.: The parameters of the Altmann–Menzerath law. Journal of Quantitative Linguistics 12, 1 (2005), 41–52. 10.1080/09296170500055301 |
Reference:
|
[12] Eisenhauer, J. G.: Regression through the Origin. Teaching Statistics. 25 (2003), 76–80. 10.1111/1467-9639.00136 |
Reference:
|
[13] Efron, B., Tibshirani, R. J.: An Introduction to the Bootstrap. Chapman & Hall/CRC, Boca Raton, New York, 1993. Zbl 0835.62038, MR 1270903 |
Reference:
|
[14] Hřebíček, L.: The constants of Menzerath–Altmann’s law. Glottometrika. 12 (1990), 61–71. |
Reference:
|
[15] Hřebíček, L.: Text Levels. Language Constructs, Constituents and the Menzerath–Altmann Law. Wissenschaftlicher Verlag Trier, Trier, 1995. |
Reference:
|
[16] Hřebíček, L.: Lectures on Text Theory. The Academy of the Sciences of the Czech Republic (Oriental Institute), Prague, 1997. |
Reference:
|
[17] Köhler, R.: Das Menzerathsche Gesetz auf Satzebene. Glottometrika 4 (1982), 103–113. |
Reference:
|
[18] Köhler, R.: Zur Interpretation des Menzerathschen Gesetzes. Glottometrika 6 (1984), 177–183. |
Reference:
|
[19] Köhler, R.: Das Menzerathsche Gesetz als Resultat des Sprachverarbeitungsmechanismus. In: Altmann, G., Schwibbe, M. H. (eds.): Das Menzerathsche Gesetz in informations – verarbeitenden Systemen. Olms, Hildesheim, 1989, 108–116. |
Reference:
|
[20] Kulacka, A.: The coefficients in the formula for the Menzerath–Altmann law. Journal of Quantitative Linguistics 17, 4 (2010), 257–268. 10.1080/09296174.2010.512160 |
Reference:
|
[21] Kulacka, A., Mačutek, J.: A discrete formula for the Menzerath–Altmann law. Journal of Quantitative Linguistics 14, 1 (2007), 23–32. 10.1080/09296170600850585 |
Reference:
|
[22] Montgomery, D. C., Peck, E. A., Vinig, G. G.: Introduction to Linear Regression Analysis. John Wiley & Sons, Inc., Hoboken, New Jersey, 2006. MR 1158462 |
Reference:
|
[23] Prün, C.: Validity of Menzerath-Altmann’s law: graphic representation of language, information processing systems and synergetic linguistics. Journal of Quantitative Linguistics 1, 2 (1994), 148–155. 10.1080/09296179408590009 |
Reference:
|
[24] Thode, H. C.: Testing for Normality. Marcel Dekker, New York, 2002. Zbl 1032.62040, MR 1989476 |
Reference:
|
[25] White, H.: A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 4 (1980), 817–838. Zbl 0459.62051, MR 0575027, 10.2307/1912934 |
Reference:
|
[26] Wimmer, G., Altmann, G.: Unified derivation of some linguistic laws. In: Köhler, R., Altmann, G., Piotrowski, R. G. (eds.): Quantitative Linquistics. An International Handbook. De Gruyter, Berlin, 2005, 791–807. |
Reference:
|
[27] Wimmer, G., Altmann, G., Hřebíček, L., Ondrejovič, S., Wimmerová, S.: Introduction to the Analysis of Texts. Veda, Bratislava, 2003, (in Slovak). |
. |