Previous |  Up |  Next

Article

Title: Orthomodular Posets Can Be Organized as Conditionally Residuated Structures (English)
Author: Chajda, Ivan
Author: Länger, Helmut
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 53
Issue: 2
Year: 2014
Pages: 29-33
Summary lang: English
.
Category: math
.
Summary: It is proved that orthomodular posets are in a natural one-to-one correspondence with certain residuated structures. (English)
Keyword: Orthomodular poset
Keyword: partial commutative groupoid with unit
Keyword: conditionally residuated structure
Keyword: divisibility condition
Keyword: orthogonality condition
MSC: 06A11
MSC: 06C15
idZBL: Zbl 06416998
idMR: MR3331004
.
Date available: 2014-12-16T14:53:12Z
Last updated: 2023-08-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144037
.
Reference: [1] Bělohlávek, R.: Fuzzy Relational Systems. Foundations and Principles. Kluwer, New York, 2002. Zbl 1067.03059
Reference: [2] Beran, L.: Orthomodular Lattices, Algebraic Approach. Academia, Prague, 1984. MR 0785005
Reference: [3] Chajda, I., Halaš, R.: Effect algebras are conditionally residuated structures. Soft Computing 15 (2011), 1383–1387. Zbl 1247.03134, 10.1007/s00500-010-0677-9
Reference: [4] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht, 2000. MR 1861369
Reference: [5] Engesser, K., Gabbay, D. M., Lehmann, D.: Handbook of Quantum Logic and Quantum Structures – Quantum Logic. Elsevier/North-Holland, Amsterdam, 2009. Zbl 1184.81003, MR 2724659
Reference: [6] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331–1352. MR 1304942, 10.1007/BF02283036
Reference: [7] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam, 2007. Zbl 1171.03001, MR 2531579
Reference: [8] Kalmbach, G.: Orthomodular Lattices. Academic Press, London, 1983. Zbl 0528.06012, MR 0716496
Reference: [9] Matoušek, M., Pták, P.: Orthocomplemented posets with a symmetric difference. Order 26 (2009), 1–21. Zbl 1201.06006, MR 2487165, 10.1007/s11083-008-9102-8
Reference: [10] Navara, M.: Characterization of state spaces of orthomodular structures. In: Proc. Summer School on Real Analysis and Measure Theory, Grado, Italy, (1997), 97–123.
Reference: [11] Pták, P.: Some nearly Boolean orthomodular posets. Proc. Amer. Math. Soc. 126 (1998), 2039–2046. Zbl 0894.06003, MR 1452822, 10.1090/S0002-9939-98-04403-7
Reference: [12] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht, 1991. MR 1176314
.

Files

Files Size Format View
ActaOlom_53-2014-2_2.pdf 154.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo