Title:
|
Functionals of spatial point processes having a density with respect to the Poisson process (English) |
Author:
|
Beneš, Viktor |
Author:
|
Zikmundová, Markéta |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
50 |
Issue:
|
6 |
Year:
|
2014 |
Pages:
|
896-913 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
$U$-statistics of spatial point processes given by a density with respect to a Poisson process are investigated. In the first half of the paper general relations are derived for the moments of the functionals using kernels from the Wiener-Itô chaos expansion. In the second half we obtain more explicit results for a system of $U$-statistics of some parametric models in stochastic geometry. In the logarithmic form functionals are connected to Gibbs models. There is an inequality between moments of Poisson and non-Poisson functionals in this case, and we have a version of the central limit theorem in the Poisson case. (English) |
Keyword:
|
difference of a functional |
Keyword:
|
limit theorem |
Keyword:
|
moments |
Keyword:
|
U-statistics |
MSC:
|
60D05 |
MSC:
|
60F05 |
MSC:
|
60G55 |
idZBL:
|
Zbl 06416866 |
idMR:
|
MR3301778 |
DOI:
|
10.14736/kyb-2014-6-0896 |
. |
Date available:
|
2015-01-13T09:49:43Z |
Last updated:
|
2016-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144115 |
. |
Reference:
|
[1] Baddeley, A.: Spatial point processes and their applications. Stochastic geometry..Lecture Notes in Math. 1892 (2007), 1-75. MR 2327290, 10.1007/978-3-540-38175-4_1 |
Reference:
|
[2] Decreusefond, L., Flint, I.: Moment formulae for general point processes..C. R. Acad. Sci. Paris, Ser. I (2014), 352, 357-361. Zbl 1297.60031, MR 3186927 |
Reference:
|
[3] Kaucky, J.: Combinatorial Identities (in Czech)..Veda, Bratislava 1975. |
Reference:
|
[4] Last, G., Penrose, M. D.: Poisson process Fock space representation, chaos expansion and covariance inequalities..Probab. Theory Relat. Fields 150 (2011), 663-690. Zbl 1233.60026, MR 2824870, 10.1007/s00440-010-0288-5 |
Reference:
|
[5] Last, G., Penrose, M. D., Schulte, M., Thäle, Ch.: Moments and central limit theorems for some multivariate Poisson functionals..Adv. Appl. Probab. 46 (2014), 2, 348-364. MR 3215537, 10.1239/aap/1401369698 |
Reference:
|
[6] Møller, J., Helisová, K.: Power diagrams and interaction processes for unions of disc..Adv. Appl. Probab. 40 (2008), 321-347. MR 2431299, 10.1239/aap/1214950206 |
Reference:
|
[7] Møller, J., Waagepetersen, R.: Statistical Inference and Simulation for Spatial Point Processes..Chapman and Hall/CRC, Boca Raton 2004. MR 2004226 |
Reference:
|
[8] Peccati, G., Taqqu, M. S.: Wiener Chaos: Moments, Cumulants and Diagrams..Bocconi Univ. Press, Springer, Milan 2011. Zbl 1231.60003, MR 2791919 |
Reference:
|
[9] Peccati, G., Zheng, C.: Multi-dimensional Gaussian fluctuations on the Poisson space..Electron. J. Probab. 15 (2010), 48, 1487-1527. Zbl 1228.60031, MR 2727319 |
Reference:
|
[10] Reitzner, M., Schulte, M.: Central limit theorems for $U$-statistics of Poisson point processes..Ann. Probab. 41 (2013), 3879-3909. Zbl 1293.60061, MR 3161465, 10.1214/12-AOP817 |
Reference:
|
[11] Schneider, R., Weil, W.: Stochastic and Integral Geometry..Springer, Berlin 2008. Zbl 1175.60003, MR 2455326 |
. |