Previous |  Up |  Next

Article

Title: An efficient estimator for Gibbs random fields (English)
Author: Janžura, Martin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 50
Issue: 6
Year: 2014
Pages: 883-895
Summary lang: English
.
Category: math
.
Summary: An efficient estimator for the expectation $\int f \d P$ is constructed, where $P$ is a Gibbs random field, and $f$ is a local statistic, i. e. a functional depending on a finite number of coordinates. The estimator coincides with the empirical estimator under the conditions stated in Greenwood and Wefelmeyer [6], and covers the known special cases, namely the von Mises statistic for the i.i.d. underlying fields and the case of one-dimensional Markov chains. (English)
Keyword: Gibbs random field
Keyword: efficient estimator
Keyword: empirical estimator
MSC: 62F12
MSC: 62M40
idZBL: Zbl 06416865
idMR: MR3301777
DOI: 10.14736/kyb-2014-6-0883
.
Date available: 2015-01-13T09:48:30Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144114
.
Reference: [1] Bickel, P. J., Klaassen, C. A. J., Ritov, Y., Wellner, J. A.: Efficient and Adaptive Estimation for Semiparametric Models..Johns Hopkins University Press, Baltimore 1993. Zbl 0894.62005, MR 1245941
Reference: [2] Dobrushin, R. L.: Prescribing a system of random variables by conditional distributions..Theor. Probab. Appl. 15 (1970), 458-486. Zbl 0264.60037, 10.1137/1115049
Reference: [3] Dobrushin, R. L., Nahapetian, B. S.: Strong convexity of the pressure for lattice systems of classical physics (in Russian)..Teoret. Mat. Fiz. 20 (1974), 223-234. MR 0468967
Reference: [4] Georgii, H. O.: Gibbs Measures and Phase Transitions..De Gruyter Studies in Mathematics 9, De Gruyter, Berlin 1988. Zbl 1225.60001, MR 0956646
Reference: [5] Greenwood, P. E., Wefelmeyer, W.: Efficiency of empirical estimators for Markov Chains..Ann. Statist. 23 (1995), 132-143. Zbl 0822.62067, MR 1331660, 10.1214/aos/1176324459
Reference: [6] Greenwood, P. E., Wefelmeyer, W.: Characterizing efficient empirical estimators for local interaction Gibbs fields..Stat. Inference Stoch. Process. 2 (1999), 119-134. Zbl 0961.62084, MR 1918878, 10.1023/A:1009993904851
Reference: [7] Gross, K.: Absence of second-order phase transitions in the Dobrushin uniqueness region..J. Statist. Phys. 25 (1981), 57-72. MR 0610692, 10.1007/BF01008479
Reference: [8] Hájek, J.: A characterization of limiting distributions of regular estimates..Wahrsch. Verw. Gebiete 14 (1970), 323-330. Zbl 0193.18001, MR 0283911, 10.1007/BF00533669
Reference: [9] Janžura, M.: Statistical analysis of Gibbs random fields..In: Trans. 10th Prague Conference on Inform. Theory, Stat. Dec. Functions, Random Processes, Prague 1984, pp. 429-438. Zbl 0708.62092, MR 1136301
Reference: [10] Janžura, M.: Local asymptotic normality for Gibbs random fields..In: Proc. Fourth Prague Symposium on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1989, pp. 275-284. Zbl 0697.62091, MR 1051446
Reference: [11] Janžura, M.: Asymptotic behaviour of the error probabilities in the pseudo-likelihood ratio test for Gibbs-Markov distributions..In: Prof. Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Physica-Verlag, Heidelberg 1994, pp. 285-296. MR 1311947
Reference: [12] Janžura, M.: Asymptotic results in parameter estimation for Gibbs random fields..Kybernetika 33 (1997), 2, 133-159. Zbl 0962.62092, MR 1454275
Reference: [13] Janžura, M.: On the concept of the asymptotic Rényi distances for random fields..Kybernetika 35 (1999), 3, 353-366. Zbl 1274.62061, MR 1704671
Reference: [14] Künsch, H.: Decay of correlations under Dobrushin's uniqueness condition and its applications..Comm. Math. Phys. 84 (1982), 207-222. MR 0661133, 10.1007/BF01208568
Reference: [15] Younes, L.: Parameter inference for imperfectly observed Gibbsian fields..Probab. Theory Rel. Fields 82 (1989), 625-645. MR 1002904, 10.1007/BF00341287
.

Files

Files Size Format View
Kybernetika_50-2014-6_3.pdf 328.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo