Previous |  Up |  Next

Article

Title: Slant and Legendre curves in Bianchi-Cartan-Vranceanu geometry (English)
Author: Călin, Constantin
Author: Crasmareanu, Mircea
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 64
Issue: 4
Year: 2014
Pages: 945-960
Summary lang: English
.
Category: math
.
Summary: We study Legendre and slant curves for Bianchi-Cartan-Vranceanu metrics. These curves are characterized through the scalar product between the normal at the curve and the vertical vector field and in the helix case they have a proper (non-harmonic) mean curvature vector field. The general expression of the curvature and torsion of these curves and the associated Lancret invariant (for the slant case) are computed as well as the corresponding variant for some particular cases. The slant (particularly Legendre) curves which are helices are completely determined. (English)
Keyword: Bianchi-Cartan-Vranceanu metric
Keyword: slant curve
Keyword: Legendre curve
Keyword: Lancret invariant
Keyword: helix
MSC: 53A55
MSC: 53B25
MSC: 53C25
MSC: 53D15
idZBL: Zbl 06433706
idMR: MR3304790
DOI: 10.1007/s10587-014-0145-2
.
Date available: 2015-02-09T17:30:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144153
.
Reference: [1] Barros, M.: General helices and a theorem of Lancret.Proc. Am. Math. Soc. 125 1503-1509 (1997). Zbl 0876.53035, MR 1363411, 10.1090/S0002-9939-97-03692-7
Reference: [2] Belkhelfa, M., Dillen, F., Inoguchi, J.-I.: Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces.{PDEs, Submanifolds and Affine Differential Geometry. Contributions of a Conference, Warsaw, Poland} B. Opozda et al. Banach Center Publ. 57 Polish Academy of Sciences, Institute of Mathematics, Warsaw 67-87 (2002). Zbl 1029.53071, MR 1972463
Reference: [3] Belkhelfa, M., Hirică, I. E., Rosca, R., Verstraelen, L.: On Legendre curves in Riemannian and Lorentzian Sasaki spaces.Soochow J. Math. 28 81-91 (2002). Zbl 1013.53016, MR 1893607
Reference: [4] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds.Progress in Mathematics 203 Birkhäuser, Boston (2010). Zbl 1246.53001, MR 2682326
Reference: [5] Blair, D. E., Dillen, F., Verstraelen, L., Vrancken, L.: Deformations of Legendre curves.Note Mat. 15 99-110 (1995). Zbl 0907.53037, MR 1611801
Reference: [6] Caddeo, R., Montaldo, S., Oniciuc, C., Piu, P.: The classification of biharmonic curves of Cartan-Vranceanu 3-dimensional spaces.{Modern Trends in Geometry and Topology. Proceedings of the 7th International Workshop on Differential Geometry and Its Applications, Deva, Romania, 2005} D. Andrica et al. Cluj University Press, Cluj-Napoca 121-131 (2006). Zbl 1135.58009, MR 2250208
Reference: [7] Camci, Ç., Yayli, Y., Hacisalihoglu, H. H.: On the characterization of spherical curves in 3-dimensional Sasakian spaces.J. Math. Anal. Appl. 342 1151-1159 (2008). Zbl 1136.53043, MR 2445265, 10.1016/j.jmaa.2007.12.056
Reference: [8] Călin, C., Crasmareanu, M.: Slant curves in 3-dimensional normal almost contact geometry.Mediterr. J. Math. 10 1067-1077 (2013). Zbl 1269.53020, MR 3045696, 10.1007/s00009-012-0217-1
Reference: [9] Călin, C., Crasmareanu, M.: Slant curves and particles in 3-dimensional warped products and their Lancret invariants.Bull. Aust. Math. Soc. 88 128-142 (2013). MR 3096876, 10.1017/S0004972712000809
Reference: [10] Călin, C., Crasmareanu, M., Munteanu, M. I.: Slant curves in three-dimensional $f$-Kenmotsu manifolds.J. Math. Anal. Appl. 394 400-407 (2012). Zbl 1266.53056, MR 2926230, 10.1016/j.jmaa.2012.04.031
Reference: [11] Cariñena, J. F., Lucas, J. de: Quantum Lie systems and integrability conditions.Int. J. Geom. Methods Mod. Phys. 6 1235-1252 (2009). Zbl 1186.81067, MR 2605548, 10.1142/S021988780900420X
Reference: [12] Cho, J. T., Inoguchi, J.-I., Lee, J.-E.: On slant curves in Sasakian 3-manifolds.Bull. Aust. Math. Soc. 74 359-367 (2006). Zbl 1106.53013, MR 2273746, 10.1017/S0004972700040429
Reference: [13] Cho, J. T., Inoguchi, J.-I., Lee, J.-E.: Biharmonic curves in 3-dimensional Sasakian space forms.Ann. Mat. Pura Appl. (4) 186 685-701 (2007). Zbl 1141.53060, MR 2317785, 10.1007/s10231-006-0026-x
Reference: [14] Cho, J. T., Lee, J.-E.: Slant curves in contact pseudo-Hermitian 3-manifolds.Bull. Aust. Math. Soc. 78 383-396 (2008). Zbl 1158.53062, MR 2472274, 10.1017/S0004972708000737
Reference: [15] Fastenakels, J., Munteanu, M. I., Veken, J. Van Der: Constant angle surfaces in the Heisenberg group.Acta Math. Sin., Engl. Ser. 27 747-756 (2011). MR 2776411, 10.1007/s10114-011-8428-0
Reference: [16] Fetcu, D.: Biharmonic Legendre curves in Sasakian space forms.J. Korean Math. Soc. 45 393-404 (2008). Zbl 1152.53049, MR 2389544, 10.4134/JKMS.2008.45.2.393
Reference: [17] Inoguchi, J.-I.: Submanifolds with harmonic mean curvature vector field in contact 3-manifolds.Colloq. Math. 100 163-179 (2004). Zbl 1076.53065, MR 2107514, 10.4064/cm100-2-2
Reference: [18] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces.Turk. J. Math. 28 153-163 (2004). Zbl 1081.53003, MR 2062560
Reference: [19] Lee, H.: Extensions of the duality between minimal surfaces and maximal surfaces.Geom. Dedicata 151 373-386 (2011). Zbl 1211.53010, MR 2780757, 10.1007/s10711-010-9539-y
Reference: [20] Lee, J.-E.: On Legendre curves in contact pseudo-Hermitian 3-manifolds.Bull. Aust. Math. Soc. 81 156-164 (2010). Zbl 1185.53048, MR 2584930, 10.1017/S0004972709000872
Reference: [21] Ou, Y.-L., Wang, Z.-P.: Constant mean curvature and totally umbilical biharmonic surfaces in 3-dimensional geometries.J. Geom. Phys. 61 1845-1853 (2011). Zbl 1227.58004, MR 2822453, 10.1016/j.geomphys.2011.04.008
Reference: [22] Piu, P., Profir, M. M.: On the three-dimensional homogeneous $SO(2)$-isotropic Riemannian manifolds.An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 57 361-376 (2011). Zbl 1249.53017, MR 2933389
Reference: [23] Veken, J. Van Der: Higher order parallel surfaces in Bianchi-Cartan-Vranceanu spaces.Result. Math. 51 339-359 (2008). MR 2400172, 10.1007/s00025-007-0282-0
Reference: [24] Wełyczko, J.: On Legrende curves in 3-dimensional normal almost contact metric manifolds.Soochow J. Math. 33 929-937 (2007). Zbl 1144.53041, MR 2404614
Reference: [25] Wełyczko, J.: On Legendre curves in 3-dimensional normal almost paracontact metric manifolds.Result. Math. 54 377-387 (2009). Zbl 1180.53080, MR 2534454, 10.1007/s00025-009-0364-2
.

Files

Files Size Format View
CzechMathJ_64-2014-4_6.pdf 288.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo