Previous |  Up |  Next

Article

Keywords:
weak axioms of choice; pseudometric spaces; metric reflections; complete metric and pseudometric spaces; limit point compact; Alexandroff-Urysohn compact; ultrafilter compact; sequentially compact
Summary:
We show: (i) The countable axiom of choice $\mathbf{CAC}$ is equivalent to each one of the statements: (a) a pseudometric space is sequentially compact iff its metric reflection is sequentially compact, (b) a pseudometric space is complete iff its metric reflection is complete. (ii) The countable multiple choice axiom $\mathbf{CMC}$ is equivalent to the statement: (a) a pseudometric space is Weierstrass-compact iff its metric reflection is Weierstrass-compact. (iii) The axiom of choice $\mathbf{AC}$ is equivalent to each one of the statements: (a) a pseudometric space is Alexandroff-Urysohn compact iff its metric reflection is Alexandroff-Urysohn compact, (b) a pseudometric space $\mathbf{X}$ is Alexandroff-Urysohn compact iff its metric reflection is ultrafilter compact. (iv) We show that the statement “The preimage of an ultrafilter extends to an ultrafilter” is not a theorem of $\mathbf{ZFA}$.
References:
[1] Bentley H.L., Herrlich H.: Countable choice and pseudometric spaces. Topology Appl. 85 (1998), 153–164. DOI 10.1016/S0166-8641(97)00138-7 | MR 1617460 | Zbl 0922.03068
[2] Blass A.: The model of set theory generated by countably many generic reals. J. Symbolic Logic 46 (1981), 732–752. DOI 10.2307/2273223 | MR 0641487 | Zbl 0482.03022
[3] Hall E., Keremedis K., Tachtsis E.: The existence of free ultrafilters on $\omega $ does not imply the extension of filters on $\omega $ to ultrafilters. Math. Logic Quart. 59 (2013), 158–267. DOI 10.1002/malq.201100092 | MR 3100753
[4] Herrlich H.: Axiom of Choice. Lecture Notes in Mathematics, 1876, Springer, New York, 2006. MR 2243715 | Zbl 1102.03049
[5] Howard P., Keremedis K., Rubin H., Stanley A.: Compactness in countable Tychonoff products and choice. Math. Logic Quart. 46 (2000), 3–16. DOI 10.1002/(SICI)1521-3870(200001)46:1<3::AID-MALQ3>3.0.CO;2-E | MR 1736645 | Zbl 0942.54006
[6] Howard P., Rubin J.E.: Consequences of the axiom of choice. Math. Surveys and Monographs, 59, American Mathematical Society, Providence, R.I., 1998. DOI 10.1090/surv/059 | MR 1637107 | Zbl 0947.03001
[7] Keremedis K.: On the relative strength of forms of compactness of metric spaces and their countable productivity in $\mathbf{ZF}$. Topology Appl. 159 (2012), 3396–3403. DOI 10.1016/j.topol.2012.08.003 | MR 2964853
[8] Munkres J.R.: Topology. Prentice-Hall, New Jersey, 1975. MR 0464128 | Zbl 0951.54001
Partner of
EuDML logo