Previous |  Up |  Next

Article

Title: Transformation of nonlinear state equations into the observer form: Necessary and sufficient conditions in terms of one-forms (English)
Author: Kaparin, Vadim
Author: Kotta, Ülle
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 1
Year: 2015
Pages: 36-58
Summary lang: English
.
Category: math
.
Summary: Necessary and sufficient conditions are given for the existence of state and output transformations, that bring single-input single-output nonlinear state equations into the observer form. The conditions are formulated in terms of differential one-forms, associated with an input-output equation of the system. An algorithm for transformation of the state equations into the observer form is presented and illustrated by an example. (English)
Keyword: nonlinear control system
Keyword: state and output transformations
Keyword: observer form
Keyword: differential one-form
MSC: 93B10
MSC: 93B17
MSC: 93C10
idZBL: Zbl 06433831
idMR: MR3333832
DOI: 10.14736/kyb-2015-1-0036
.
Date available: 2015-03-23T18:46:16Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144201
.
Reference: [1] Besançon, G.: On output transformations for state linearization up to output injection..IEEE Trans. Automat. Control 44 (1999), 10, 1975-1981. Zbl 0956.93010, MR 1716168, 10.1109/9.793789
Reference: [2] Bestle, D., Zeitz, M.: Canonical form observer design for non-linear time-variable systems..Int. J. Control 38 (1983), 2, 419-431. 10.1080/00207178308933084
Reference: [3] Boutat, D., Benali, A., Hammouri, H., Busawon, K.: New algorithm for observer error linearization with a diffeomorphism on the outputs..Automatica 45 (2009), 10, 2187-2193. Zbl 1179.93050, MR 2890777, 10.1016/j.automatica.2009.05.030
Reference: [4] Chiasson, J.: Nonlinear differential-geometric techniques for control of a series DC motor..IEEE Trans. Control Systems Technol. 2 (1994), 1, 35-42. 10.1109/87.273108
Reference: [5] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition..Springer-Verlag, London 2007. MR 2305378, 10.1007/978-1-84628-595-0
Reference: [6] Glumineau, A., Moog, C. H., Plestan, F.: New algebro-geometric conditions for the linearization by input-output injection..IEEE Trans. Automat. Control 41 (1996), 4, 598-603. Zbl 0851.93018, MR 1385333, 10.1109/9.489283
Reference: [7] Guay, M.: Observer linearization by output-dependent time-scale transformations..IEEE Trans. Automat. Control 47 (2002), 10, 1730-1735. MR 1929950, 10.1109/tac.2002.803547
Reference: [8] Halás, M., Kotta, Ü: A transfer function approach to the realisation problem of nonlinear systems..Int. J. Control 85 (2012), 3, 320-331. Zbl 1282.93078, MR 2881269, 10.1080/00207179.2011.651748
Reference: [9] Technology, Institute of Cybernetics at Tallinn University of: NLControl website. (2014)..
Reference: [10] Isidori, A.: Nonlinear Control Systems: An Introduction..Lect. Notes Control Inform. Sci. 72, Springer-Verlag, Berlin 1985. Zbl 0569.93034, MR 0895138, 10.1007/bfb0006368
Reference: [11] Johnson, W. P.: The curious history of Faà di Bruno's formula..Amer. Math. Monthly 109 (2002), 3, 217-234. Zbl 1024.01010, MR 1903577, 10.2307/2695352
Reference: [12] Jouan, P.: Immersion of nonlinear systems into linear systems modulo output injection..SIAM J. Control Optim. 41 (2003), 6, 1756-1778. Zbl 1036.93006, MR 1972533, 10.1137/s0363012901391706
Reference: [13] Kaparin, V., Kotta, Ü.: Necessary and sufficient conditions in terms of differential-forms for linearization of the state equations up to input-output injections..In: UKACC International Conference on CONTROL 2010 (K. J. Burnham and V. E. Ersanilli, eds.), IET, Coventry 2010, pp. 507-511. 10.1049/ic.2010.0334
Reference: [14] Kaparin, V., Kotta, Ü.: Theorem on the differentiation of a composite function with a vector argument..Proc. Est. Acad. Sci. 59 (2010), 3, 195-200. Zbl 1205.26019, MR 2743565, 10.3176/proc.2010.3.01
Reference: [15] Krener, A. J., Isidori, A.: Linearization by output injection and nonlinear observers..Systems Control Lett. 3 (1983), 1, 47-52. Zbl 0524.93030, MR 0713426, 10.1016/0167-6911(83)90037-3
Reference: [16] Krener, A. J., Respondek, W.: Nonlinear observers with linearizable error dynamics..SIAM J. Control Optim. 23 (1985), 2, 197-216. Zbl 0569.93035, MR 0777456, 10.1137/0323016
Reference: [17] Mullari, T., Kotta, Ü.: Transformation the nonlinear system into the observer form: Simplification and extension..Eur. J. Control 15 (2009), 2, 177-183. Zbl 1298.93117, MR 2509832, 10.3166/ejc.15.177-183
Reference: [18] Noh, D., Jo, N. H., Seo, J. H.: Nonlinear observer design by dynamic observer error linearization..IEEE Trans. Automat. Control 49 (2004), 10, 1746-1750. MR 2091326, 10.1109/tac.2004.835397
Reference: [19] Respondek, W., Pogromsky, A., Nijmeijer, H.: Time scaling for observer design with linearizable error dynamics..Automatica 40 (2004), 2, 277-285. Zbl 1055.93010, MR 2145305, 10.1016/j.automatica.2003.09.012
Reference: [20] Tõnso, M., Rennik, H., Kotta, Ü.: WebMathematica-based tools for discrete-time nonlinear control systems..Proc. Est. Acad. Sci. 58 (2009), 4, 224-240. Zbl 1179.93079, MR 2604250, 10.3176/proc.2009.4.04
.

Files

Files Size Format View
Kybernetika_51-2015-1_5.pdf 401.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo