Previous |  Up |  Next

Article

Title: Robust Observer-based control of switched nonlinear systems with quantized and sampled output (English)
Author: Perez, Carlos
Author: Mera, Manuel
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 1
Year: 2015
Pages: 59-80
Summary lang: English
.
Category: math
.
Summary: This paper deals with the robust stabilization of a class of nonlinear switched systems with non-vanishing bounded perturbations. The nonlinearities in the systems satisfy a quasi-Lipschitz condition. An observer-based linear-type switching controller with quantized and sampled output signal is considered. Using a dwell-time approach and an extended version of the invariant ellipsoid method (IEM) sufficient conditions for stability in a practical sense are derived. These conditions are represented as Bilinear Matrix Inequalities (BMI's). Finally, two examples are given to verify the efficiency of the proposed method. (English)
Keyword: switched systems
Keyword: robust stabilization
Keyword: quantization
MSC: 93C30
MSC: 93C57
MSC: 93C62
MSC: 93D21
idZBL: Zbl 06433832
idMR: MR3333833
DOI: 10.14736/kyb-2015-1-0059
.
Date available: 2015-03-23T18:48:47Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144202
.
Reference: [1] Aihara, K., Suzuki, H.: Theory of hybrid dynamical systems and its applications to biological and medical systems..Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 368 (2010), 4893-4914. Zbl 1211.37099, 10.1098/rsta.2010.0237
Reference: [2] Azhmyakov, V.: On the geometric aspects of the invariant ellipsoid method: Application to the robust control design..In: Proc. 50th IEEE Conference on Decision and Control and demonstratedntrol Conference, Orlando 2011, pp. 1353-1358. 10.1109/cdc.2011.6161180
Reference: [3] Balluchi, A., Benvenuti, L., Benedetto, M. D. Di, Sangiovanni-Vincentelli, A.: The design of dynamical observers for hybrid systems: Theory and application to an automotive control problem..Automatica 49 (2013), 915-925. Zbl 1284.93155, MR 3029107, 10.1016/j.automatica.2013.01.037
Reference: [4] Yazdi, M. Barkhordari, Jahed-Motlagh, M. R.: Stabilization of a CSTR with two arbitrarily switching modes using modal state feedback linearization..Chemical Engrg. J. 155 (2009), 838-843. 10.1016/j.cej.2009.09.008
Reference: [5] Blanchini, F., Miani, S.: Set-Theoretic Methods in Control..Birkhauser, Boston 2008. Zbl 1140.93001, MR 2359816, 10.1007/978-0-8176-4606-6_9
Reference: [6] Branicky, M.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems..IEEE Trans. Automat. Control 57 (1998), 3038-3050. Zbl 0904.93036, MR 1617575, 10.1109/tac.2012.2199169
Reference: [7] Donkers, M. C. F., Hemmels, W. P. M. H., Wouw, N. Van den, Hetel, L.: Stability analysis of networked control systems using a switched linear systems approach..IEEE Trans. Automat. Control 56 (2011), 9, 2101-2115. MR 2865767, 10.1109/tac.2011.2107631
Reference: [8] Filipov, A. F.: Differential Equations with Discontinuous Right-hand Side..Kluwer, Dordrecht 1988.
Reference: [9] Fridman, E.: Descriptor discretized Lyapunov functional method: Analysis and design..IEEE Trans. Automat. Control 51 (2006), 890-897. MR 2232620, 10.1109/tac.2006.872828
Reference: [10] Fridman, E., Niculescu, S. I.: On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays..Int. J. Robust Nonlinear Control 18 (2008), 3, 364-374. Zbl 1284.93206, MR 2378407, 10.1002/rnc.1230
Reference: [11] Fridman, E., Dambrine, M.: Control under quantization, saturation and delay: An LMI approach..Automatica 45 (2009), 10, 2258-2264. Zbl 1179.93089, MR 2890785, 10.1016/j.automatica.2009.05.020
Reference: [12] Fu, M., Xie, L.: The sector bound approach to quantized feedback control..IEEE Trans. Automat. Control 50 (2005), 11, 1698-1711. MR 2182717, 10.1109/tac.2005.858689
Reference: [13] Gao, H., Chen, T.: A new approach to quantized feedback control systems..Automatica 44 (2008), 2, 534-542. Zbl 1283.93131, MR 2530803, 10.1016/j.automatica.2007.06.015
Reference: [14] Geromel, J. C., Colaneri, P.: Stability and stabilization of continuous-time switched linear systems..SIAM J. Control Optim. 45 (2006), 5, 1915-1930. Zbl 1130.34030, MR 2272172, 10.1137/050646366
Reference: [15] Glover, J. D., Schweppe, F. C.: Control of linear dynamic systems with set constrained disturbance..IEEE Trans. Automat. Control 16 (1971), 5, 411-423. MR 0287947, 10.1109/tac.1971.1099781
Reference: [16] Gonzalez-Garcia, S., Polyakov, A., Poznyak, A.: Linear feedback spacecraft stabilization using the method of invariant ellipsoids..In: Proc. 41st Southeastern Symposium on System Theory 2009, pp. 195-198. 10.1109/ssst.2009.4806834
Reference: [17] Gonzalez-Garcia, S., Polyakov., A., Poznyak, A.: Output linear controller for a class of nonlinear systems using the invariant ellipsoid technique..In: American Control Conference, St. Louis 2009, pp. 1160-1165. 10.1109/acc.2009.5160434
Reference: [18] Hartman, P.: Ordinary Differential Equations. Second edition..Society for Industrial and Applied Mathematics, Philadelphia 2002. MR 1929104, 10.1137/1.9780898719222
Reference: [19] Hespanha, J. P., Morse, A. S.: Stability of switched systems with average dwell-time..In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 2655-2660. 10.1109/cdc.1999.831330
Reference: [20] Kruszewski, A., Jiang, W. J., Fridman, E., Richard, J. P., Toguyeni, A.: A switched system approach to exponential stabilization through communication network..IEEE Trans. Control Systems Technol. 20 (2012), 887-900. 10.1109/tcst.2011.2159793
Reference: [21] Khurzhanski, A. B., Varaiya, P.: Ellipsoidal techniques for reachability under state constraints..SIAM J. Control Optim. 45 (2006), 1369-1394. MR 2257227, 10.1137/s0363012903437605
Reference: [22] Li, J., Liu, Y., Mei, R., Li, B.: Robust H$_\infty$ output feedback control of discrete time switched systems via a new linear matrix inequality formulation..In: Proc. 8th World Congress on Intelligent Control and Automation 2010, pp. 3377-3382. 10.1109/wcica.2010.5553817
Reference: [23] Liberzon, D.: Switching in systems and control..In: Systems & Control. Foundations & Applications, Birkhauser, Boston 2003. Zbl 1036.93001, MR 1987806, 10.1007/978-1-4612-0017-8
Reference: [24] Liberzon, D.: Stabilizing a switched linear system by sampled-data quantized feedback..In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference, Orlando 2011, pp. 8321-8328. 10.1109/cdc.2011.6160212
Reference: [25] Liberzon, D.: Finite data-rate feedback stabilization of switched and hybrid linear systems..Automatica 50 (2014), 2, 409-420. MR 3163788, 10.1016/j.automatica.2013.11.037
Reference: [26] Lin, H., Antsaklis, P. J.: Stability and stabilizability of switched linear systems: A survey of recent results..IEEE Trans. Automat. Control 54 (2009), 308-322. MR 2491959, 10.1109/tac.2008.2012009
Reference: [27] Liu, Y., Niu, Y., Ho, D.: Sliding mode control for linear uncertain switched systems..In: Proc. 31st Chinese Control Conference, Hefei 2012, pp. 3177-3181.
Reference: [28] Liu, T., Jiang, Z. P., Hill, D. J.: Small-gain based output-feedback controller design for a class of nonlinear systems with actuator dynamic quantization..IEEE Trans. Automat. Control 57 (2012),5, 1326-1332. MR 2923898, 10.1109/tac.2012.2191870
Reference: [29] Liu, T., Jiang, Z. P., Hill, D. J.: A sector bound approach to feedback control of nonlinear systems with state quantization..Automatica 48 (2012), 1, 145-152. Zbl 1244.93066, MR 2879422, 10.1016/j.automatica.2011.09.041
Reference: [30] Lozada-Castillo, N. B., Alazki, H., Poznyak, A. S.: Robust control design through the attractive ellipsoid technique for a class of linear stochastic models with multiplicative and additive noises..IMA J. Math. Control Inform. 30 (2013), 1-19. Zbl 1273.93167, MR 3037694, 10.1093/imamci/dns008
Reference: [31] Nair, G. N., Fagnani, F., Zampieri, S., Evans, R. J.: Feedback control under data rate constraints: an overview..Proc. of the IEEE 95 (2007), 108-137. 10.1109/jproc.2006.887294
Reference: [32] Nie, H., Song, Z., Li, P., Zhao, J.: Robust H$_\infty$ dynamic output feedback control for uncertain discrete-time switched systems with time-varying delays..In: Proc. 2008 Chinese Control and Decision Conference, Yantai-Shandong 2008, pp. 4381-4386. 10.1109/ccdc.2008.4598158
Reference: [33] Ordaz, P., Alazki, H., Poznyak, A.: A sample-time adjusted feedback for robust bounded output stabilization..Kybernetika 49 (2013), 6, 911-934. Zbl 1284.93242, MR 3182648
Reference: [34] Peng, C., Tian, Y. C.: Networked H$_\infty$ control of linear systems with state quantization..Inform. Sci. 177 (2007), 5763-5774. Zbl 1126.93338, MR 2362219, 10.1016/j.ins.2007.05.025
Reference: [35] Polyak, B. T., Nazin, S. A., Durieu, C., Walter, E.: Ellipsoidal parameter or state estimation under model uncertainty..Automatica 40 (2004), 1171-1179. Zbl 1056.93063, MR 2148312, 10.1016/j.automatica.2004.02.014
Reference: [36] Polyak, B. T., Topunov, M. V.: Suppression of bounded exogenous disturbances: Output feedback..Autom. Remote Control 69 (2008), 801-818. Zbl 1156.93338, MR 2437453, 10.1134/s000511790805007x
Reference: [37] Poznyak, A. S.: Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Techniques..Elsevier, Amsterdam 2008. MR 2374025, 10.1134/s0005117909110174
Reference: [38] Poznyak, A. S., Azhmyakov, V., Mera, M.: Practical output feedback stabilization for a class of continuous-time dynamic system under sample-data outputs..Int. J. Control 84 (2011), 1408-1416. MR 2830870, 10.1080/00207179.2011.603097
Reference: [39] Shorten, R., Wirth, F., Manson, O., Wulff, K., King, C.: Stability criteria for switched and hybrid systems..SIAM Rev. 49 (2007), 545-592. MR 2375524, 10.1137/05063516x
Reference: [40] Sun, Z., Ge, S. S.: Stability Theory of Switched Dynamical Systems, Communications and Control Engineering..Springer-Verlag, London 2011. MR 3221851, 10.1007/978-0-85729-256-8
Reference: [41] Tatikonda, S., Mitter, S.: Control under communication constraints..IEEE Trans. Automat. Control 49 (2004), 1056-1068. MR 2071934, 10.1109/tac.2004.831187
Reference: [42] Wang, Y., Gupta, V., Antsaklis, P.: On passivity of a class of discrete-time switched nonlinear systems..IEEE Trans. Automat. Control 59 (2014), 692-702. MR 3188475, 10.1109/tac.2013.2287074
Reference: [43] Yanyan, L., Jun, Z., Dimirovski, G.: Passivity, feedback equivalence and stability of switched nonlinear systems using multiple storage functions..In: Proc. 30th Chinese Control Conference, Yantai 2011, pp. 1805-1809.
Reference: [44] Zhang, W. A., Yu, L.: Output feedback stabilization of networked control systems with packet dropouts..IEEE Trans. Automat. Control 52 (2007), 1705-1710. MR 2352449, 10.1109/tac.2007.904284
.

Files

Files Size Format View
Kybernetika_51-2015-1_6.pdf 716.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo