Title:
|
Stability of nonlinear $h$-difference systems with $n$ fractional orders (English) |
Author:
|
Wyrwas, Małgorzata |
Author:
|
Pawluszewicz, Ewa |
Author:
|
Girejko, Ewa |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
51 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
112-136 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the paper we study the subject of stability of systems with $h$-differences of Caputo-, Riemann-Liouville- and Grünwald-Letnikov-type with $n$ fractional orders. The equivalent descriptions of fractional $h$-difference systems are presented. The sufficient conditions for asymptotic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability of the considered systems with $n$-orders. (English) |
Keyword:
|
fractional difference systems |
Keyword:
|
difference operators |
Keyword:
|
stability |
MSC:
|
39A13 |
MSC:
|
93Dxx |
idZBL:
|
Zbl 06433835 |
idMR:
|
MR3333836 |
DOI:
|
10.14736/kyb-2015-1-0112 |
. |
Date available:
|
2015-03-23T18:54:13Z |
Last updated:
|
2016-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144205 |
. |
Reference:
|
[1] Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts..J. Computat. Analysis Appl. 13 (2011), 574-582. Zbl 1225.39008, MR 2752428 |
Reference:
|
[2] Atıcı, F. M., Eloe, P. W.: A transform method in discrete fractional calculus..Int. J. Differ, Equ. 2 (2007), 165-176. MR 2493595 |
Reference:
|
[3] Atıcı, F. M., Eloe, P. W.: Discrete fractional calculus with the nabla operator..Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I(3) (2009), 1-12. Zbl 1189.39004, MR 2558828, 10.14232/ejqtde.2009.4.3 |
Reference:
|
[4] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: Discrete-time fractional variational problems..Signal Processing 91 (2011), 513-524. Zbl 1203.94022, 10.1016/j.sigpro.2010.05.001 |
Reference:
|
[5] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: Necessary optimality conditions for fractional difference problems of the calculus of variations..Discrete Contin. Dyn. Syst. 29 (2011), 417-437. Zbl 1209.49020, MR 2728463, 10.3934/dcds.2011.29.417 |
Reference:
|
[6] Busłowicz, M.: Stability of continuous-time linear systems described by state equation with fractional commensurate orders of derivatives..Przegląd Elektroniczby (Electrical Review) 88 (2012), 17-20. |
Reference:
|
[7] Chen, F., Luo, X., Zhou, Y.: Existence results for nonlinear fractional difference equation..Adv. Differ. Equ. 2011 (2011), 12 pages. Zbl 1207.39012, MR 2747089, 10.1155/2011/713201 |
Reference:
|
[8] Chen, F.: Fixed points and asymptotic stability of nonlinear fractional difference equations..Electr. J. Qual. Theory Differ. Equ. 39 (2011), 1-18. MR 2805759, 10.1155/2011/713201 |
Reference:
|
[9] Chen, F., Liu, Z.: Asymptotic stability results for nonlinear fractional difference equations..J. Appl. Math. 2012 (2012), 14 pages. Zbl 1235.39008, MR 2898069, 10.1155/2012/879657 |
Reference:
|
[10] Ferreira, R. A. C., Torres, D. F. M.: Fractional $h$-difference equations arising from the calculus of variations..Appl. Anal. Discrete Math. 5 (2011), 110-121. Zbl 1289.39007, MR 2809039, 10.2298/aadm110131002f |
Reference:
|
[11] Girejko, E., Mozyrska, D.: Semi-linear fractional systems with Caputo type multi-step differences..In: Symposium on Fractional Signals and Systems, Instituto Superior de Engenharia de Coimbra, Coimbra, November 2011, pp. 79-88. |
Reference:
|
[12] Guermah, S., Djennoune, S., Bettayeb, M.: Asymptotic stability and practical stability of linear discrete-time fractional order systems..In: 3rd IFAC Workshop on Fractional Differentiation and its Applications, Ankara 2008. |
Reference:
|
[13] Holm, M. T.: The Theory of Discrete Fractional Calculus: Development and Application..PhD. Thesis, University of Nebraska - Lincoln, 2011. MR 2873503 |
Reference:
|
[14] Hu, J. B., Lu, G. P., Zhang, S. B., Zhao, L. D.: Lyapunov stability theorem about fractional system without and with delay..Commun. Nonlinear Sci. Numer. Simul. 20 (2014), 905-913. MR 3255642, 10.1016/j.cnsns.2014.05.013 |
Reference:
|
[15] Jarad, F., Abdeljawad, T., Baleanu, D., Biçen, K.: On the stability of some discrete fractional nonautonomous systems..Abstr. Appl. Anal. 2012 (2012), 9 pages. Zbl 1235.93206, MR 2889092, 10.1155/2012/476581 |
Reference:
|
[16] Kaczorek, T.: Selected Problems of Fractional Systems Theory..Springer-Verlag, Berlin, Heidelberg 2011. Zbl 1221.93002, MR 2798773, 10.1007/978-3-642-20502-6 |
Reference:
|
[17] Kaczorek, T.: Practical stability of positive fractional discrete-time linear systems..Bull. Pol. Acad. Sci. Techn. Sci. 56 (2008), 313-317. Zbl 1167.93019 |
Reference:
|
[18] Kaczorek, T.: Fractional positive linear systems..Kybernetes 38 (2009), 1059-1078. MR 2597223, 10.1108/03684920910976826 |
Reference:
|
[19] Kaczorek, T.: Reachability of cone fractional continuous-time linear systems..Int. J. Appl. Math. Comput. Sci. 19 (2009), 89-93. Zbl 1169.93004, MR 2515026, 10.2478/v10006-009-0008-4 |
Reference:
|
[20] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and applications of fractional differential equations..North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam 2006. Zbl 1092.45003, MR 2218073, 10.1016/s0304-0208(06)80001-0 |
Reference:
|
[21] Li, C. P., Zhang, F. R.: A survey on the stability of fractional differential equations..Eur. Phys. J. 193 (2011), 27-47. 10.1140/epjst/e2011-01379-1 |
Reference:
|
[22] Li, Y., Chen, Y. Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems..Automatica 45 (2009), 1965-1969. Zbl 1185.93062, MR 2879525, 10.1140/epjst/e2011-01379-1 |
Reference:
|
[23] Li, Y., Chen, Y. Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability..Comput. Math. Appl. 59 (2010), 1810-1821. Zbl 1189.34015, MR 2595955, 10.1016/j.camwa.2009.08.019 |
Reference:
|
[24] Margarita, R., Rogosin, S. V., Machado, J. A. Tenreiro, Trujillo, J. J.: Stability of fractional order systems..Math. Probl. Engrg. 2013 (2013), 14 pages. MR 3062648, 10.1155/2013/356215 |
Reference:
|
[25] Miller, K. S., Ross, B.: Fractional difference calculus..In: Proc. International Symposium on Univalent Functions, Fractional Calculus and their Applications, Nihon University, Koriyama 1988, pp. 139-152. Zbl 0693.39002, MR 1199147 |
Reference:
|
[26] Mozyrska, D., Girejko, E.: Overview of the fractional $h$-difference operators..In: Advances in Harmonic Analysis and Operator Theory: The Stefan Samko Anniversary Volume (A. Almeida, L. Castro, F.-O. Speck, eds.), Springer 2013, pp. 253-267. MR 3060418, 10.1007/978-3-0348-0516-2_14 |
Reference:
|
[27] Mozyrska, D., Girejko, E., Wyrwas, M.: Comparision of $h$-difference fractional operators..In: Advances in the Theory and Applications of non-integer Order Systems (W. Mitkowski, J. Kacprzyk, J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 191-197. MR 3289943, 10.1007/978-3-319-00933-9_17 |
Reference:
|
[28] Mozyrska, D., Pawluszewicz, E.: Local controllability of nonlinear discrete-time fractional order systems..Bull. Pol. Acad. Sci. Techn. Sci. 61 (2013), 251-256. 10.2478/bpasts-2013-0024 |
Reference:
|
[29] Ostalczyk, P.: Equivalent descriptions of a discrete time fractional order linear system and its stability domains..Int. J. Appl. Math. Comput. Sci. 22 (2012), 533-538. Zbl 1302.93140, MR 3025260 |
Reference:
|
[30] Petráš, I.: Stability of fractional-order systems with rational orders: a survey..Fract. Calc. Appl. Anal. 12 (2009), 269-298. Zbl 1182.26017, MR 2572711 |
Reference:
|
[31] Petráš, I.: Fractional-Order Nonlinear Systems: Modelling, Analysis and Simulation..Springer, Dordrecht 2011. 10.1007/978-3-642-18101-6 |
Reference:
|
[32] Podlubny, I.: Fractional Differential Equations. Mathematics in Sciences and Engineering..Academic Press, San Diego 1999. MR 1658022 |
Reference:
|
[33] Tavazoei, M. S., Haeri, M.: A note on the stability of fractional order systems..Math. Comput. Simul. 79 (2009), 1566-1576. Zbl 1168.34036, MR 2488105, 10.1016/j.matcom.2008.07.003 |
Reference:
|
[34] Trigeassou, J. C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations..Signal Process. 91 (2011), 437-445. Zbl 1203.94059, 10.1016/j.sigpro.2010.04.024 |
Reference:
|
[35] Wyrwas, M., Girejko, E., Mozyrska, D., Pawluszewicz, E.: Stability of fractional difference systems with two orders.In: Advances in the Theory and Applications of Non-integer Order Systems (W. Mitkowski, J. Kacprzyk, and J. Baranowski, eds.), Lect. Notes Electr. Engrg. 257, Springer International Publishing, Switzerland 2013, pp. 41-52. Zbl 1271.93129, MR 3289930, 10.1007/978-3-319-00933-9_4 |
Reference:
|
[36] Zhao, L. D., Hu, J. B., Fang, J. A., Zhang, W. B.: Studying on the stability of fractional-order nonlinear system..Nonlinear Dynamics 70 (2012), 475-479. Zbl 1267.34013, MR 2991287, 10.1007/s11071-012-0469-0 |
. |