Previous |  Up |  Next

Article

Title: Finite-time synchronization of chaotic systems with noise perturbation (English)
Author: Wu, Jie
Author: Ma, Zhi-cai
Author: Sun, Yong-zheng
Author: Liu, Feng
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 1
Year: 2015
Pages: 137-149
Summary lang: English
.
Category: math
.
Summary: In this paper, we investigate the finite-time stochastic synchronization problem of two chaotic systems with noise perturbation. We propose new adaptive controllers, with which we can synchronize two chaotic systems in finite time. Sufficient conditions for the finite-time stochastic synchronization are derived based on the finite-time stability theory of stochastic differential equations. Finally, some numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical results. (English)
Keyword: synchronization
Keyword: finite-time
Keyword: noise perturbation
Keyword: adaptive feedback controller
MSC: 34F05
MSC: 34H10
MSC: 93A14
MSC: 93C40
idZBL: Zbl 06433836
idMR: MR3333837
DOI: 10.14736/kyb-2015-1-0137
.
Date available: 2015-03-23T18:56:23Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144206
.
Reference: [1] Aghababa, M. P., Aghababa, H. P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs..Nonlinear Dyn. 69 (2012), 1903-1914. Zbl 1263.93111, MR 2945528, 10.1007/s11071-012-0395-1
Reference: [2] Aghababa, M. P., Aghababa, H. P.: A novel finite-time sliding mode controller for synchronization of chaotic systems with input nonlinearity..Arab. J. Sci. Eng. 38 (2013), 3221-3232. MR 3116110, 10.1007/s13369-012-0459-z
Reference: [3] Aghababa, M. P., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique..Appl. Math. Model. 35 (2011), 3080-3091. Zbl 1219.93023, MR 2776263, 10.1016/j.apm.2010.12.020
Reference: [4] Alvarez, G., Hernández, L., Muñoz, J., Montoya, F., Li, S. J.: Security analysis of communication system based on the synchronization of different order chaotic systems..Phys. Lett. A 345 (2005), 245-250. 10.1016/j.physleta.2005.07.083
Reference: [5] Argenti, F., DeAngeli, A., DelRe, E., Genesio, R., Pagni, P., Tesi, A.: Secure communications based on discrete time chaotic systems..Kybernetika 33 (1997), 41-50. MR 1486295
Reference: [6] Beran, Z.: On characterization of the solution set in case of generalized semiflow..Kybernetika 45 (2009), 701-715. Zbl 1190.93036, MR 2599107
Reference: [7] Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., Zhou, C. S.: The synchronization of chaotic systems..Phys. Rep. 366 (2002), 1-101. Zbl 0995.37022, MR 1913567, 10.1016/s0370-1573(02)00137-0
Reference: [8] Cai, N., Li, W. Q., Jing, Y. W.: Finite-time generalized synchronization of chaotic systems with different order..Nonlinear Dyn. 64 (2011), 385-393. MR 2803218, 10.1007/s11071-010-9869-1
Reference: [9] Cheng, S., Ji, J. C., Zhou, J.: Fast synchronization of directionally coupled chaotic systems..Appl. Math. Model. 37 (2013), 127-136. MR 2994171, 10.1016/j.apm.2012.02.018
Reference: [10] Čelikovský, S.: Observer form of the hyperbolic-type generalized Lorenz system and its use for chaos synchronization..Kybernetika 40 (2004), 649-664. Zbl 1249.93090, MR 2120388
Reference: [11] Čelikovský, S., Chen, G. R.: On the generalized Lorenz canonical form..Chaos Solition. Fract. 26 (2005), 1271-1276. Zbl 1100.37016, MR 2149315, 10.1016/j.chaos.2005.02.040
Reference: [12] Ding, K., Han, Q. L.: Effects of coupling delays on synchronization in Lur'e complex dynamical networks..Int. J. Bifur. Chaos 20 (2010), 3565-3584. Zbl 1208.34082, MR 2765079, 10.1142/s0218127410027908
Reference: [13] Ding, K., Han, Q. L.: Master-slave synchronization criteria for horizontal platform systems using time delay feedback control..J. Sound Vibration 330 (2011), 2419-2436. 10.1016/j.jsv.2010.12.006
Reference: [14] Ding, K., Han, Q. L.: Master-slave synchronization of nonautonomous chaotic systems and its application to rotating pendulums..Int. J. Bifur. Chaos 22 (2012), 1250147. Zbl 1270.34149, 10.1142/s0218127412501477
Reference: [15] Enjieu, K. H. G., Chabi, O. J. B., Woafo, P.: Synchronization dynamics in a ring of four mutually coupled biological systems. Commun..Nonlinear Sci. Numer. Simul. 13 (2008), 1361-1372. MR 2369467, 10.1016/j.cnsns.2006.11.004
Reference: [16] Grosu, I., Padmanabanm, E., Roy, P. K., Dana, S. K.: Designing coupling for synchronization and amplification of chaos..Phys. Rev. Lett. 100 (2008), 234102. 10.1103/physrevlett.100.234102
Reference: [17] He, W. L., Cao, J. D.: Adaptive synchronization of a class of chaotic neural networks with known or unknown parameters..Phys. Lett. A 372 (2008), 408-416. Zbl 1217.92011, 10.1016/j.physleta.2007.07.050
Reference: [18] He, W. L., Du, W. L., Qian, F., Cao, J. D.: Synchronization analysis of heterogeneous dynamical networks..Neurocomputing 104 (2013), 146-154. 10.1016/j.neucom.2012.10.008
Reference: [19] He, W. L., Qian, F., Han, Q. L., Cao, J. D.: Synchronization error estimation and controller design for delayed Lur'e systems with parameter mismatches..IEEE Trans. Neur. Net. Lear. Systems 23 (2012), 1551-1563. 10.1109/tnnls.2012.2205941
Reference: [20] Henrion, D.: Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems..Kybernetika 48 (2012), 1089-1099. Zbl 1255.37002, MR 3052875
Reference: [21] Huang, D. B.: Simple adaptive-feedback controller for identical chaos synchronization..Phys. Rev. E 71 (2005), 037203. 10.1103/physreve.71.037203
Reference: [22] Lasalle, J. P.: The extend of asymptotic stability..Proc. Natl. Acad. Sci. U. S. A. 46 (1960), 363-365. MR 0113014, 10.1073/pnas.46.3.363
Reference: [23] Lasalle, J. P.: Some extensions of Liapunov's second method..IRE Trans. Circuit Theory 7 (1960), 520-527. MR 0118902, 10.1109/tct.1960.1086720
Reference: [24] Li, H. Y., Hu, Y. A., Wang, R. Q.: Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties..Kybernetika 49 (2013), 554-567. MR 3117914
Reference: [25] Lin, J. S., Yan, J. J.: Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller..Nonlinear Anal. Real. 10 (2009), 1151-1159. Zbl 1167.37329, MR 2474288, 10.1016/j.nonrwa.2007.12.005
Reference: [26] Liu, Y. J.: Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system..Nonlinear Dyn. 67 (2012), 89-96. Zbl 1242.93056, 10.1007/s11071-011-9960-2
Reference: [27] Lu, W. L., Chen, T. P.: New approach to synchronization analysis of linearly coupled ordinary differential systems..Physica D 213 (2006), 214-230. Zbl 1105.34031, MR 2201200, 10.1016/j.physd.2005.11.009
Reference: [28] Lynnyk, V., Čelikovský, S.: On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption..Kybernetika 46 (2010), 1-18. Zbl 1190.93038, MR 2666891
Reference: [29] Mao, X.: Stochastic Differential Equations and Applications..Horwood 1997. Zbl 1138.60005
Reference: [30] Ottino, J. M., Muzzio, F. J., Tjahjadi, M., Franjione, J. G., Jana, S. C., Kusch, H. A.: Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing process..Science 257 (1992), 754-760. 10.1126/science.257.5071.754
Reference: [31] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems..Phys. Rev. Lett. 64 (1990), 821-824. Zbl 1098.37553, MR 1038263, 10.1103/physrevlett.64.821
Reference: [32] Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., Ditto, W. L.: Controlling chaos in the brain..Nature 370 (1994), 615-620. 10.1038/370615a0
Reference: [33] Yan, J. J., Hung, M. L., Chiang, T. Y., Yang, Y. Q.: Robust synchronization of chaotic systems via adaptive sliding mode control..Phys. Lett. A 356 (2006), 220-225. Zbl 1160.37352, 10.1016/j.physleta.2006.03.047
Reference: [34] Ma, J., Zhang, A.H., Xia, Y.F., Zhang, L.: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215 (2010), 3318-3326.. MR 2576820, 10.1016/j.amc.2009.10.020
Reference: [35] Vincent, U. E., Guo, R.: Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller..Phys. Lett. A 375 (2011), 2322-2326. Zbl 1242.34078, MR 2737904, 10.1016/j.physleta.2011.04.041
Reference: [36] Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W.: Finite-time synchronization of uncertain unified chaotic systems based on CLF..Nonlinear Anal. Real. 10 (2009), 2842-2849. Zbl 1183.34072, MR 2523247, 10.1016/j.nonrwa.2008.08.010
Reference: [37] Yang, Y. Q., Wu, X. F.: Global finite-time synchronization of a class of the non-autonomous chaotic systems..Nonlinear Dyn. 70 (2012), 197-208. Zbl 1267.93150, MR 2991264, 10.1007/s11071-012-0442-y
Reference: [38] Yin, J. L., Khoo, S.: Comments on ``Finite-time stability theorem of stochastic nonlinear systems''..Automatica 47 (2011), 1542-1543. MR 2889257, 10.1016/j.automatica.2011.02.052
Reference: [39] Yin, J. L., Khoo, S., Man, Z. H., Yu, X. H.: Finite-time stability and instability of stochastic nonlinear systems..Automatica 47 (2011), 2671-2677. Zbl 1235.93254, MR 2886936, 10.1016/j.automatica.2011.08.050
Reference: [40] Zhao, J. K., Wu, Y., Wang, Y. Y.: Generalized finite-time synchronization between coupled chaotic systems of different orders with unknown parameters..Nonlinear Dyn. 74 (2013), 479-485. Zbl 1279.34062, MR 3117637, 10.1007/s11071-013-0970-0
.

Files

Files Size Format View
Kybernetika_51-2015-1_10.pdf 2.296Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo