Title:
|
Dunkl-Gabor transform and time-frequency concentration (English) |
Author:
|
Ghobber, Saifallah |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
255-270 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The aim of this paper is to prove two new uncertainty principles for the Dunkl-Gabor transform. The first of these results is a new version of Heisenberg's uncertainty inequality which states that the Dunkl-Gabor transform of a nonzero function with respect to a nonzero radial window function cannot be time and frequency concentrated around zero. The second result is an analogue of Benedicks' uncertainty principle which states that the Dunkl-Gabor transform of a nonzero function with respect to a particular window function cannot be time-frequency concentrated in a subset of the form $S\times \mathcal B(0,b)$ in the time-frequency plane $\mathbb R^d\times \widehat {\mathbb R}^d$. As a side result we generalize a related result of Donoho and Stark on stable recovery of a signal which has been truncated and corrupted by noise. (English) |
Keyword:
|
time-frequency concentration |
Keyword:
|
Dunkl-Gabor transform |
Keyword:
|
uncertainty principles |
MSC:
|
42C20 |
MSC:
|
43A32 |
MSC:
|
46E22 |
idZBL:
|
Zbl 06433733 |
idMR:
|
MR3336037 |
DOI:
|
10.1007/s10587-015-0172-7 |
. |
Date available:
|
2015-04-01T12:40:39Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144225 |
. |
Reference:
|
[1] Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms.Rev. Mat. Iberoam. 19 (2003), 23-55. MR 1993414, 10.4171/RMI/337 |
Reference:
|
[2] Jeu, M. F. E. de: The Dunkl transform.Invent. Math. 113 (1993), 147-162. Zbl 0789.33007, MR 1223227, 10.1007/BF01244305 |
Reference:
|
[3] Demange, B.: Uncertainty principles for the ambiguity function.J. Lond. Math. Soc., II. Ser. 72 (2005), 717-730. Zbl 1090.42004, MR 2190333, 10.1112/S0024610705006903 |
Reference:
|
[4] Donoho, D. L., Stark, P. B.: Uncertainty principles and signal recovery.SIAM J. Appl. Math. 49 (1989), 906-931. Zbl 0689.42001, MR 0997928, 10.1137/0149053 |
Reference:
|
[5] Dunkl, C. F.: Integral kernels with reflection group invariance.Can. J. Math. 43 (1991), 1213-1227. Zbl 0827.33010, MR 1145585, 10.4153/CJM-1991-069-8 |
Reference:
|
[6] Dunkl, C. F.: Differential-difference operators associated to reflection groups.Trans. Am. Math. Soc. 311 (1989), 16-183. Zbl 0652.33004, MR 0951883, 10.1090/S0002-9947-1989-0951883-8 |
Reference:
|
[7] Faris, W. G.: Inequalities and uncertainty principles.J. Math. Phys. 19 (1978), 461-466. MR 0484134, 10.1063/1.523667 |
Reference:
|
[8] Ghobber, S., Jaming, P.: Uncertainty principles for integral orperators.Stud. Math. 220 (2014), 197-220. MR 3173045, 10.4064/sm220-3-1 |
Reference:
|
[9] Gröchenig, K.: Uncertainty principles for time-frequency representations.Advances in Gabor Analysis H. G. Feichtinger et al. Applied and Numerical Harmonic Analysis Birkhäuser, Basel (2003), 11-30. Zbl 1039.42004, MR 1955930 |
Reference:
|
[10] Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis.Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. 28 Springer, Berlin (1994). MR 1303780 |
Reference:
|
[11] Hogan, J. A., Lakey, J. D.: Time-Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling.Applied and Numerical Harmonic Analysis Birkhäuser, Boston (2005). Zbl 1079.42027, MR 2107799 |
Reference:
|
[12] Lapointe, L., Vinet, L.: Exact operator solution of the Calogero-Sutherland model.Commun. Math. Phys. 178 (1996), 425-452. Zbl 0859.35103, MR 1389912, 10.1007/BF02099456 |
Reference:
|
[13] Mejjaoli, H.: Practical inversion formulas for the Dunkl-Gabor transform on $\mathbb R^d$.Integral Transforms Spec. Funct. 23 (2012), 875-890. MR 2998902, 10.1080/10652469.2011.647015 |
Reference:
|
[14] Mejjaoli, H., Sraieb, N.: Uncertainty principles for the continuous Dunkl Gabor transform and the Dunkl continuous wavelet transform.Mediterr. J. Math. 5 (2008), 443-466. Zbl 1181.26036, MR 2465571, 10.1007/s00009-008-0161-2 |
Reference:
|
[15] Polychronakos, A. P.: Exchange operator formalism for integrable systems of particles.Phys. Rev. Lett. 69 (1992), 703-705. Zbl 0968.37521, MR 1174716, 10.1103/PhysRevLett.69.703 |
Reference:
|
[16] Rösler, M.: An uncertainty principle for the Dunkl transform.Bull. Aust. Math. Soc. 59 (1999), 353-360. Zbl 0939.33012, MR 1698045, 10.1017/S0004972700033025 |
Reference:
|
[17] Rösler, M., Voit, M.: Markov processes related with Dunkl operators.Adv. Appl. Math. 21 (1998), 575-643. Zbl 0919.60072, MR 1652182, 10.1006/aama.1998.0609 |
Reference:
|
[18] Shimeno, N.: A note on the uncertainty principle for the Dunkl transform.J. Math. Sci., Tokyo 8 (2001), 33-42. Zbl 0976.33015, MR 1818904 |
Reference:
|
[19] Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform.Doc. Math., J. DMV (electronic) 5 (2000), 201-226. Zbl 0947.42024, MR 1758876 |
. |